an:07085677
Zbl 1416.83145
Mück, Wolfgang
Generalized supergravity equations and generalized Fradkin-Tseytlin counterterm
EN
J. High Energy Phys. 2019, No. 5, Paper No. 63, 19 p. (2019).
1126-6708 1029-8479
2019
j
83E50 81T50 81T60 83E30
anomalies in field and string theories; superstrings and heterotic strings; superspaces; superstring vacua
Summary: The generalized Fradkin-Tseytlin counterterm for the (type I) Green-Schwarz superstring is determined for background fields satisfying the generalized supergravity equations (GSE). For this purpose, we revisit the derivation of the GSE based upon the requirement of kappa-symmetry of the superstring action. Lifting the constraint of vanishing bosonic torsion components, we are able to make contact to several different torsion constraints used in the literature. It is argued that a natural geometric interpretation of the GSE vector field that generalizes the dilaton is as the torsion vector, which can combine with the dilatino spinor into the torsion supervector. To find the counterterm, we use old results for the one-loop effective action of the heterotic sigma model. The counterterm is covariant and involves the worldsheet torsion for vanishing curvature, but cannot be constructed as a local functional in terms of the worldsheet metric. It is shown that the Weyl anomaly cancels without imposing any further constraints on the background fields. In the case of ordinary supergravity, it reduces to the Fradkin-Tseytlin counterterm modulo an additional constraint.