an:04014756
Zbl 0625.05028
Shi, Ronghua
Graph decomposition with constraint on the minimum degree
EN
Kexue Tongbao, Foreign Lang. Ed. 30, 1143-1146 (1985).
00229429
1985
j
05C35
Graph decomposition; connectivity; minimum degree
In [Graph decomposition with constraints on the connectivity and minimum degree, J. Graph Theory 7, 165-167 (1983; Zbl 0515.05045)] the reviewer demonstrated the existence of a function g(s,t) such that every graph of minimum degree at least g(s,t) has two disjoint nonempty subgraphs which together cover all vertices of the graph and have minimum degree at least s and t, respectively. The main result of the present paper is the equality g(s,t)\(\leq s+2t-3\) for \(t\geq 4\). This was also proved by \textit{P. Hajnal} [Combinatorica 3, 95-99 (1983; Zbl 0529.05030)].
C.Thomassen
Zbl 0515.05045; Zbl 0529.05030