an:00053957
Zbl 0932.81004
Garbaczewski, P. (ed.); Popowicz, Z. (ed.)
Nonlinear fields: classical, random, semiclassical. Papers from the 27th Karpacz winter school on theoretical physics, Karpacz, Poland, February 18--March 1, 1991
EN
Singapore: World Scientific. xx, 697 p. (1991).
1991
b
81-06 00B25
Karpacz (Poland); Nonlinear fields; Classical; Random; Semiclassical; Proceedings; Winter school
The articles of this volume will not be indexed individually. The 25th winter school (1989) has been reviewed (see Zbl 0682.00014).
Contents: Ioannis Bakas, Self-duality, integrable systems, \(W\)-algebras and all that (2-35); A. M. Semikhatov, Integrable hierarchies, Virasoro algebra, and Virasoro constrained hierarchies (36-85); Allan P. Fordy, Integrable Hamiltonian systems and their fermionic and supersymmetric extensions (86-112); L. Bonora, Toda theories, integrability and conformal invariance (113-137); Pierre Mathieu, KdV type equations in conformal field theory and subcritical strings (138-143); Pierre Mathieu and David Senechal, KdV type equations in subcritical strings (144-170); F. Gesztesy, (m)KdV-soliton solutions on quasi-periodic finite-gap backgrounds (171-194); J. Zagrodzinski, Dispersion equation technique for periodic solutions of NLPDEs (195-204); W. Oevel, Gauge transformations and reciprocal links for integrable equations (205-214); M. Blaszak, Symmetries on soliton manifold (215-224); Bernard Piette and Wojciech J. Zakrzewski, Skyrmions and their scattering in \((2+1)\) dimensions (225-243); J. Burzlaff, Vortex-vortex scattering (244-255); Tetsuji Miwa, Solvable lattice models and representation theory of quantum groups (258-285); Satoru Saito, Integrability of strings (286-311); Marek Bozejko, A \(q\)-deformed probability, Nelson's inequality and central limit theorems (312-335); M. Chaichian, P. Kulish and J. Lukierski, Supercovariant \(q\)-oscillators (336-345); A. Isaev and Z. Popowicz, \(q\)-deformations of conformal algebra and its central extension (346-358); R. Vilela Mendes, Topics in the quantum theory of nonintegrable systems (360-383); Michael C. Mackey, The second law of thermodynamics: comments from ergodic theory (384-415); L. de la Pena and A. M. Cetto, A fundamental relation between stochasticity and quantization (416-435); A. M. Cetto and L. de la Pena, Detailed balance and radiative corrections in stochastic electrodynamics (436-454); Piotr Garbaczewski, Nelson's stochastic mechanics as the problem of random flights and rotations (455-477); Aubrey Truman and David Williams, Excursions in stochastic mechanics and the quantum mechanics of Brownian motion (478-499); Z. Haba, Invariant measures for classical and quantum fields (500-509); J. Kupsch, Reproducing kernel spaces and random fields for fermions (512-528); I. H. Duru, Methods for solving path integrals and QED from classical particle trajectories (529-543); Wilhelm Fushchich, Construction of solutions of nonlinear d'Alembert, Maxwell, Yang-Mills equations by solutions of nonlinear spinor equations (544-556); Edwin Langmann, On Schwinger terms in \((3+1)\) dimensions (557-567); G. W. Semenoff, Anyons and Chern-Simons theory: a review (568-599); H. Arodz, Classical string with rigidity (602-616); I. V. Barashenkov, B. S. Getmanov and V. E. Kovtun, The unified approach to integrable relativistic equations: soliton solutions over nonvanishing backgrounds (617-654); J. A. Holyst and H. Benner, \(\Lambda\)-model: a universal class of kink-bearing systems (655-664); M. Lakshmanan and M. Senthil Velan, Dynamical symmetries and finite-dimensional nonlinear systems: integrability and separability (665-674); W. A. Majewski, On the entropic properties of quantum dynamical systems (675-681); V. R. Garsevanishvili and M. B. Sheftel, On the choice of invariant variables for two-particle processes (682-691).
Zbl 0682.00014