Bah, Ibrahima; Heidmann, Pierre
Bubble bag end: a bubbly resolution of curvature singularity. (English) Zbl 1476.83015

Summary: We construct a family of smooth charged bubbling solitons in $M^4 \times T^2$, four-dimensional Minkowski with a two-torus. The solitons are characterized by a degeneration pattern of the torus along a line in M^4 defining a chain of topological cycles. They live in the same parameter regime as non-BPS non-extremal four-dimensional black holes, and are ultracompact with sizes ranging from microscopic to macroscopic scales. The six-dimensional framework can be embedded in type IIB supergravity where the solitons are identified with geometric transitions of non-BPS D1-D5-KKm bound states. Interestingly, the geometries admit a minimal surface that smoothly opens up to a bubbly end of space. Away from the solitons, the solutions are indistinguishable from a new class of singular geometries. By taking a limit of large number of bubbles, the soliton geometries can be matched arbitrarily close to the singular spacetimes. This provides the first classical resolution of a curvature singularity beyond the framework of supersymmetry and supergravity by blowing up topological cycles wrapped by fluxes at the vicinity of the singularity.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
83E50 Supergravity
83C75 Space-time singularities, cosmic censorship, etc.
35Q51 Soliton equations

Keywords:
black holes in string theory; black holes; classical theories of gravity; spacetime singularities

Full Text: DOI arXiv

References:

[50] Israel, W.; Khan, KA, Collinear Particles and Bondi Dipoles in General Relativity, Nuovo Cim., 33, 331 (1964) · Zbl 0119.23802 · doi:10.1007/BF02750196

[51] P.O. Mazur and E. Mottola, Gravitational condensate stars: An alternative to black holes, gr-qc/0109035 [INSPIRE]. · Zbl 1242.83067

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.