Bingham, Nicholas H.; Ostaszewski, Adam J.
The Steinhaus-Weil property. I: Subcontinuity and amenability. (English)
Sarajevo J. Math. 16(29), No. 1, 13-32 (2020).

Summary: The Steinhaus-Weil theorem that concerns us here is the simple, or classical, ‘interior-points’ property – that in a Polish topological group a nonnegligible set B has the identity as an interior point of $B^{-1}B$. There are various converses; the one that mainly concerns us is due to Simmons and Mospan. Here the group is locally compact, so we have a Haar reference measure η. The Simmons-Mospan theorem states that a (regular Borel) measure has such a Steinhaus-Weil property if and only if it is absolutely continuous with respect to the Haar measure. This the first of four companion papers (we refer to the others as II [“The Steinhaus-Weil property. II: The Simmons-Mospan converse”, ibid. (to appear)], III [“The Steinhaus-Weil property. III: Weil topologies”], and IV [“The Steinhaus-Weil property. IV: Other interior-point properties”]). Here (Propositions 1.1–1.7 and Theorems 1.1–1.4) we exploit the connection between the interior-points property and a selective form of infinitesimal invariance afforded by a certain family of selective reference measures σ, drawing on Solecki’s amenability at 1 (and using Fuller’s notion of subcontinuity).

In II, we turn to a converse of the Steinhaus-Weil theorem, the Simmons-Mospan theorem, and related results. In III, we discuss Weil topologies, linking the topological group-theoretic and measure-theoretic aspects. We close in IV with some other interior-point results related to the Steinhaus-Weil theorem.

MSC:
22A10 Analysis on general topological groups
43A05 Measures on groups and semigroups, etc.
28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures

Keywords:
Steinhaus-Weil property; amenability at 1; measure subcontinuity; Simmons-Mospan theorem; selective measure; interior-points property; Haar measure; left Haar null

Full Text: DOI

References:

34. R. V. Fuller, Relations among continuous and various non-continuous functions. Pacific J. Math. 25 (1968), 495-509. - Zbl 0165.25304

46. T. S. Liu, A. van Rooij, Transformation groups and absolutely continuous measures, Indag. Math. 71 (1968), 225-231. - Zbl 0155.46001

47. T. S. Liu, A. van Rooij, J-K Wang, Transformation groups and absolutely continuous measures II. Indag. Math. 73 (1970), 57-61. - Zbl 0188.45006

[67] H. Steinhaus, Sur les distances des points de mesure positive. Fund. Math. 1 (1920), 83-104. · Zbl 47.0179.02
[71] E.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.