Gabriyelyan, Saak S.; Morris, Sidney A.

The authors show that every infinite-dimensional Banach space has \mathbb{T}^ω as a quotient group, where \mathbb{T} denotes the compact unit circle group. Indeed, they prove, in Theorem 2.1, the same result in a more general setting. In detail, if E is a locally convex space (over either the real or the complex field) which contains as a subspace an infinite-dimensional Fréchet space, then E has \mathbb{T}^ω as a quotient group.

In addition, the authors provide two examples:

- Example 2.4 shows that the condition in Theorem 2.1 is not necessary.
- Example 2.5 shows that not every complete locally convex space has \mathbb{T}^ω as a quotient group.

Reviewer: Jacopo Somaglia (Milano)

MSC:
46A03 General theory of locally convex spaces
46A04 Locally convex Fréchet spaces and (DF)-spaces
54H11 Topological groups (topological aspects)
46B26 Nonseparable Banach spaces

Keywords:
Banach space; Fréchet space; quotient space; separable; topological group; quotient group; locally convex space; circle group; separable quotient problem

Full Text: DOI arXiv

References:

[17] Śliwa, W., Every infinite-dimensional non-archimedian Fréchet space has an orthogonal basic sequence, Indag. Math., 11, 463-466, (2000) · Zbl 0980.46057

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.