
The infinite symmetric group S_ω is a topological group with respect to the product topology of \mathbb{N}^ω. The authors show that the affine groups $AGL_n\mathbb{Q}$ with $2 \leq n \leq \omega$ are maximal among the closed subgroups of S_ω. Their proof uses the classification of infinite 3-transitive Jordan groups due to S. A. Adeleke and D. Macpherson [Proc. Lond. Math. Soc. (3) 72, No. 1, 63–123 (1996; Zbl 0839.20002)]. A similar maximality result is proved for the projective groups $PGL_n\mathbb{Q}$ with $3 \leq n \leq \omega$. As the authors point out, this holds more generally for projective groups over arbitrary infinite fields by F. Bogomolov and M. Rovinsky [Cent. Eur. J. Math. 11, No. 1, 17–26 (2013; Zbl 1277.20003)].

Reviewer: Theo Grundhöfer (Würzburg)

MSC:
- 20B27 Infinite automorphism groups
- 03C40 Interpolation, preservation, definability
- 20E28 Maximal subgroups
- 51E15 Finite affine and projective planes (geometric aspects)
- 51E10 Steiner systems in finite geometry

Keywords:
- infinite symmetric group; affine group; projective group

Full Text: DOI arXiv

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.