Sahni, Amita; Sehgal, Poonam Trama
Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. (English)

Summary: The main objective of this article is to study self-orthogonal negacyclic codes of length \(n \) over a finite field \(\mathbb{F}_q \), where the characteristic of \(\mathbb{F}_q \) does not divide \(n \). We investigate issues related to their existence, characterization and enumeration. We find the necessary and sufficient conditions for the existence of self-orthogonal negacyclic codes of length \(n \) over a finite field \(\mathbb{F}_q \). We characterize the defining sets and the corresponding generator polynomials of these codes. We obtain formulae to calculate the number of self-dual and self-orthogonal negacyclic codes of a given length \(n \) over \(\mathbb{F}_q \). The enumeration formula for self-orthogonal negacyclic codes involves a two-variable function \(\chi(d, q) \) defined by \(\chi(d, q) = 0 \) if \(d \) divides \((q^k + 1) \) for some \(k \geq 0 \) and \(\chi(d, q) = 1 \), otherwise. We give necessary and sufficient conditions when \(\chi(d, q) = 0 \) holds.

MSC:
94B05 Linear codes (general theory)
94B15 Cyclic codes
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)

Keywords:
generator polynomial; negacyclic codes; self-dual; self-orthogonal

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.