Reducing the number of questions in nonlocal games. (English) Zbl 1349.81062

Summary: We show how a vector-valued version of Schechtman’s empirical method can be used to reduce the number of questions in a nonlocal game G while preserving the quotient $\beta^*(G)/\beta(G)$ of the quantum over the classical bias. We apply our method to the Khot-Vishnoi game, with exponentially many questions per player, to produce a family of games indexed in n with polynomially many ($N \approx n^8$) questions and n answers per player so that the ratio of the quantum over the classical bias is $\Omega(n/\log^2 n)$.

©2016 American Institute of Physics

MSC:
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
91A05 2-person games

References:

The situation where the players maximize the value of the game is also very interesting, but the optimization of the bias is more suitable in this work.

In Ref. 4 the authors study the ratio of the quantum over the classical value of the game rather than the bias.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.