Faupin, Jérémy; Fröhlich, Jürg; Schubnel, Baptiste
On the probabilistic nature of quantum mechanics and the notion of closed systems. (English)

The notion of “closed system” in Quantum Mechanics is discussed. Two models of a quantum mechanical system P spatially far separated from the “rest of the universe” Q are studied. Under reasonable assumptions on the interaction between P and Q, it is shown that the system P behaves as a closed system if the initial state of $P \cup Q$ belongs to a large class of states, including ones exhibiting entanglement between P and Q. The results are used to illustrate the non-deterministic nature of quantum mechanics. It is also shown that assigning an initial state and a unitary time evolution to a quantum system is generally not sufficient to predict the results of a measurement with certainty.

Reviewer: T. C. Mohan (Chennai)

MSC:
81P05 General and philosophical questions in quantum theory
81S22 Open systems, reduced dynamics, master equations, decoherence
81P40 Quantum coherence, entanglement, quantum correlations

Keywords:
closed systems; quantum mechanics; probabilistic nature

Full Text: DOI arXiv Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.