An abelian topological group G is said to be w-divisible if the equality between topological weights $w(G) = w(mG) \geq \omega$ holds for every $m \in \mathbb{N}_+$. This notion, introduced by the authors of the present paper in [Topology Appl. 155, No. 4, 252–272 (2008; Zbl 1149.22004)], provides useful insight into the fine structure of compact abelian groups, when studied through Pontryagin duality.

S. Macario and the reviewer [J. Pure Appl. Algebra 215, No. 4, 655–663 (2011; Zbl 1215.54015)] proved that every abelian group G decomposes as $G = G_{\text{tor}} \oplus G_d$ where G_{tor} is bounded torsion and G_d is w-divisible. In the present paper, the authors provide an alternative proof of this fact and draw some consequences from it. Among the latter, the authors prove that for every abelian group G, $G^\#$, the same group equipped with its maximal precompact topology, can be decomposed as $G^\# = G^\#_{\text{tor}} \times G^\#_d$ where G_{tor} is bounded torsion and $G^\#_d$ is w-divisible.

Reviewer: Jorge Galindo (Castellón)

MSC:
- 22A05 Structure of general topological groups
- 22C05 Compact groups
- 54H11 Topological groups (topological aspects)
- 20K45 Topological methods for abelian groups
- 54D30 Compactness

Keywords:
- abelian group; bounded abelian group; compact abelian group; divisible weight; factorization theorem; w-divisible group; torsion theory

Full Text: DOI arXiv

References:
[5] DOI: 10.1016/j.topol.2007.06.018 · Zbl 1149.22004 · DOI: 10.1016/j.topol.2007.06.018
[9] DOI: 10.1016/j.jpaa.2010.06.014 · Zbl 1215.54015 · DOI: 10.1016/j.jpaa.2010.06.014
[14] DOI: 10.1007/BF02020393 · Zbl 0056.02302 · DOI: 10.1007/BF02020393

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.