Rauhut, Holger; Ward, Rachel

In practice, one has often to interpolate functions which are smooth as well as sparse in some sense. In this excellent paper, the authors merge classical smoothness-based interpolation methods with modern sparsity constraints and nonlinear reconstruction methods.

For a bounded domain D, let $\psi_j : D \to \mathbb{C}$ ($j \in \Lambda$) be orthonormal functions with finite index set Λ, $|\Lambda| = N$. For given sampling points $t_\ell \in D$ ($\ell = 1, \ldots, m$) and $f = \sum_{j \in \Lambda} x_j \psi_j$, let $y = (f(t_\ell))_{\ell=1}^m$ and let A be the sampling matrix with the entries $A_{\ell,j} = \psi_j(t_\ell)$ ($\ell = 1, \ldots, m; j \in \Lambda$). For interpolation, the authors consider the function $f^\# = \sum_{j \in \Lambda} x^\#_j \psi_j$, whose coefficient vector $x^\#$ is the solution of the weighted ℓ_1 minimization problem

$$\min \|z\|_{\omega,1} \quad \text{subject to} \quad \|Az - y\|_2 \leq \eta$$

with the weighted ℓ_1 norm $\|z\|_{\omega,1} = \sum_{j \in \Lambda} \omega_j |z_j|$ and convenient weights $\omega_j \geq 1$.

Using the new concepts of weighted null space property and weighted restricted isometry property of the sampling matrix A, the authors prove general interpolation theorems. Corresponding error estimates of $f - f^\#$ in L_∞ resp. L_2 norm are given. In several examples and numerical tests, this theory is applied to spherical harmonic interpolation and tensorized polynomial interpolation (with Chebyshev resp. Legendre polynomials).

Reviewer: Manfred Tasche (Rostock)

MSC:
41A05 Interpolation in approximation theory
65D05 Numerical interpolation
94A20 Sampling theory in information and communication theory

Keywords:
interpolation; weighted ℓ_1-minimization; error estimates; smooth and sparse functions; compressive sensing; bounded orthonormal system; weighted restricted isometry property; weighted null space property; sampling matrix

Full Text: DOI

References:
[7] Byrenheid, G., Dung, D. V., Sickel, W., Ulrich, T., Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in H^s on the unit sphere, Preprint, 2013 · Zbl 1347.42003

[34] Nocedal, J., Numerical optimization, (1999), Springer · Zbl 0830.65001

[38] Ranft, H.; Ward, R., Sparse Legendre expansions via \$\ell_1\$-minimization, J. Approx. Theory, 164, 5, 517-533, (2010) · Zbl 1239.65016

[42] Szegö, G., Orthogonal polynomials, (1975), American Mathematical Society Providence, RI · Zbl 61.0386.03

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH

[46] Xu, W., Compressive sensing for sparse approximations: construction, algorithms and analysis, (2010), California Institute of Technology, Department of Electrical Engineering, Ph.D. dissertation

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.