Wan, Yuanyuan; Xu, Haiqing


Summary: This paper studies the identification and estimation of a static binary decision game of incomplete information. We make no parametric assumptions on the joint distribution of private signals and allow them to be correlated. We show that the parameters of interest can be point-identified subject to a scale normalization under mild support requirements for the regressors (publicly observed state variables) and errors (private signals). Following [C. F. Manski and E. Tamer, Econometrica 70, No. 2, 519–546 (2002; Zbl 1121.62544)], we propose a maximum score type estimator for the structural parameters and establish the asymptotic properties of the estimator.

MSC:

91A28 Signaling and communication in game theory
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference

Keywords: semiparametric identification and estimation; incomplete information games; modified maximum score estimator; U-process

References:


This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.