Yeh, Jenny Yuan-Chun; Cheng, Chen-Mou; Yang, Bo-Yin
Operating degrees for XL vs. F_4/F_5 for generic MQ with number of equations linear in that of variables. (English) Zbl 1290.94140

Summary: We discuss the complexity of MQ, or solving multivariate systems of m equations in n variables over the finite field F_q of q elements. MQ is an important hard problem in cryptography. In particular, the complexity to solve overdetermined MQ systems with randomly chosen coefficients when $m = cn$ is related to the provable security of a number of cryptosystems.

In this context there are two basic approaches. One is to use XL (“eXtended Linearization”) with the solving step tailored to sparse linear algebra; the other is of the many variations of Jean-Charles Faugère’s F_4/F_5 algorithms.

Although F_4/F_5 has been the de facto standard in the cryptographic community, it was proposed [B.-Y. Yang et al., Information and communications security. 6th international conference, ICICS 2004. Lect. Notes Comput. Sci. 3269, 401–413 (2004; Zbl 1109.94353)] that XL with Sparse Solver may be superior in some cases, particularly the generic overdetermined case with $m/n = c + o(1)$.

At the steering committee meeting of the post-quantum cryptography workshop in 2008, Johannes Buchmann listed several key research questions to all post-quantum cryptographers present. One problem in MQ-based cryptography, he noted, is “if the difference between the operating degrees of XL (with-sparse-solver) and F_4/F_5 approaches can be accurately bounded for random systems.”

We answer in the affirmative when $m/n = c + o(1)$, using saddle point analysis:

1. For instances with randomly drawn coefficients, the degrees of operation of XL and F_4/F_5 has the most pronounced differential in the large-field, “barely overdetermined” ($m - n = c$) cases, where the discrepancy is $\propto \sqrt{n}$.
2. In most other types of random systems with $m/n = c + o(1)$, the expected difference in the operating degrees of XL and F_4/F_5 is constant which can be evaluated mathematically via asymptotic analysis.

Our conclusions are partially backed up using tests with Maple, MAGMA, and an XL implementation featuring Block Wiedemann as the sparse-matrix solver.

For the entire collection see [Zbl 1275.94006].

MSC:
94A60 Cryptography
68P25 Data encryption (aspects in computer science)
68W30 Symbolic computation and algebraic computation

Keywords:
sparse solver; Gröbner basis; XL; MQ; asymptotic analysis; F_4/ F_5

Software:
Maple

Full Text: DOI