The structure and representation of \(n \)-ary algebras of DNA recombination. (English)

The paper is devoted to the structure and representation of \(n \)-ary algebras arising from DNA recombination, where \(n \) is the number of DNA segments participating in recombination. The author applies methods which involve a generalization of the Jordan formalization of observables in quantum mechanics in \(n \)-ary splicing algebras. He proves that every identity satisfied by \(n \)-ary DNA recombination, with no restriction on the degree, is a consequence of \(n \)-ary commutativity and a single \(n \)-ary identity of the degree \(3n - 2 \). This result solves an open problem in the theory of \(n \)-ary intermolecular recombination [M. R. Bremner, Discrete Contin. Dyn. Syst., Ser. S 4, No. 6, 1387–1399 (2011; Zbl 1256.17001)].

Reviewer: Sh. A. Ayupov (Tashkent)

MSC:
17C50 Jordan structures associated with other structures
17A42 Other \(n \)-ary compositions (\(n \geq 3 \))
17D92 Genetic algebras

Keywords:
Jordan algebras; DNA recombination; splicing algebras; special algebras

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH