De Muynck, Willem M.
Can we escape from Bell's conclusion that quantum mechanics describes a non-local reality?
(English) Zbl 1222.81095

Summary: It is argued that for a proper understanding of the question of non-locality in quantum mechanics and hidden variables theories purporting to reproduce the quantum mechanical measurement results, it is essential to consider stochastic hidden variables theories. F. Laudisa's [ibid. 27, No. 3, 297–313 (1996; Zbl 1222.81098)] conclusion that in derivations of the Bell inequality an implicit assumption of locality is made, is shown to be a consequence of his restriction to deterministic hidden variables theories. It is also demonstrated how it is possible to draw a clear distinction between contextualism and non-objectivism, non-objectivism amounting to the impossibility of reducing an individual quantum mechanical measurement result, either in a deterministic or in a stochastic way, to the hidden variables state the individual object is in independently of the measurement. The analogy with thermodynamics is exploited to clarify the issue.

MSC:
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)

Full Text: DOI

References:
[21] Lochak, G., Hidden parameters, hidden probabilities, (), 245-259
[22] Ludwig, G., ()
[27] Muynck, W.M.de, Is Bohm’s theory a nonlocal hidden variables theory?, (), 419-438
[34] Stapp, H.P., Comments on “interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness”, Foundations of physics, 24, 1665-1669, (1994)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.