Burgdorf, Sabine; Klep, Igor
Trace-positive polynomials and the quartic tracial moment problem. (English. Abridged French version) [Zbl 1205.15047]

A noncommutative polynomial \(f \in \mathbb{R}\langle X, Y \rangle \) is said to be trace-positive if for all symmetric \(n \times n \) matrices \(A \) and \(B \), the matrix \(f(A, B) \) has a nonnegative trace. I. Klep and M. Schweighofer have recently shown that such polynomials are intimately connected to Connes’ embedding conjecture [Adv. Math. 217, No. 4, 1816-1837 (2008; Zbl 1184.46055)]. The main result of the paper under review states that if a trace-positive polynomial \(f \) has degree \(\leq 4 \), then \(f = \sum_{i=1}^{4} g_i^* g_i + \sum_{j=1}^{r} [h_j, k_j] \) for some \(g_i, h_j, k_j \in \mathbb{R}\langle X, Y \rangle \).

An application to the truncated tracial moment problem is also given.

Reviewer: Matej Brešar (Maribor)

MSC:
15B48 Positive matrices and their generalizations; cones of matrices
16R99 Rings with polynomial identity
15A45 Miscellaneous inequalities involving matrices
13J30 Real algebra
46L35 Classifications of \(C^* \)-algebras

Keywords:
trace-positive polynomial; cyclic equivalence; sum of hermitian squares; tracial moment problem

Full Text: DOI Link

References:
[6] Connes, A., Classification of injective factors. cases \(\text{II}_1 \), \(\text{II}_\infty \), \(\text{III}_\lambda \), \(\lambda \neq 1 \), Ann. math. (2), 104, 1, 73-115, (1976)
[15] Powers, V.; Reznick, B., Notes towards a constructive proof of Hilbert’s theorem on ternary quartics, (), 299-227 · Zbl 0259.12001

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH

[19] Reznick, B., On Hilbert’s construction of positive polynomials, preprint

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.