Stuart, David M. A.

Geodesics and the Einstein nonlinear wave system. (English) [Zbl 1072.58021]

Summary: The system under consideration is Einstein’s equation $R_{\mu\nu}(g) - g_{\mu\nu}R(g)/2 = 8\pi G T_{\mu\nu}$ for a pseudo-Riemannian metric g coupled to a semi-linear wave equation for a complex function φ. Assume that this wave equation on Minkowski space admits a stable solitary wave of the type known as non-topological solitons. The system is studied in the scaling limit in which the solitons have small size ε and amplitude δ with $\delta \leq \delta_0\varepsilon^{7/4}$. It is proved that, for ε sufficiently small, given a solution of the vacuum Einstein equation, i.e., a Ricci flat pseudo-Riemannian metric γ, there exists a finite time interval, independent of ε, δ, on which there is a solution of the full system (g, φ) with $(g - \gamma)$ small and φ close to a non-topological soliton centred on a time-like geodesic (in appropriate Sobolev norms).

MSC:
- 58J45 Hyperbolic equations on manifolds
- 35L70 Second-order nonlinear hyperbolic equations
- 83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)

Keywords:
- Geodesic
- Nonlinear wave equations on manifolds
- Solitons

Full Text: DOI

References:
[8] Damour, T., New problems and new approximation methods in general relativity, (), 57-72
[16] Friedrich, H., The Cauchy problem for Einstein’s equation, (), 127-224