
This is a very interesting paper which gives new insight in Hilbert’s theorem. The authors prove:

Theorem 1.1: Suppose \(f(x, y, z) \) is a nonnegative real quartic form which defines a smooth plane curve \(Q = \{(x : y : z) \in \mathbb{P}^2(\mathbb{C}) : f(x, y, z) = 0\} \). Then the inequivalent representations of \(f \) as a sum of three squares (of real quadratic forms) – modulo the real orthogonal group \(O(\mathbb{R}^3) \) – are in one-to-one correspondence with the eight 2-torsion points in the non-identity component of \(J(\mathbb{R}) \), where \(J \) is the Jacobian of \(Q \).

The assumptions imply in particular: \(f \) is irreducible, \(Q(\mathbb{R}) = \emptyset \), \(Q \) has genus 3, \(J \) has 63 non-zero complex 2-torsion points. Hilbert’s original theorem (i.e. any nonnegative quartic form \(f \) is a sum of three squares in at least one way) follows from the above theorem by continuity arguments.

The proof of Theorem 1.1 proceeds in two steps:

(1) The non-trivial 2-torsion points of \(J(\mathbb{C}) \) are in one-to-one correspondence with the equivalence classes – modulo \(O(\mathbb{C}^3) \) – of representations of \(f \) as a sum of three squares of complex quadratic forms. A condensed proof using Weil divisors, the Picard group \(\text{Pic}(Q) \) and the Riemann-Roch Theorem is given in the paper. The result itself goes back to A. B. Coble (1929; JFM 55.0808.02), it was rediscovered by C. T. C. Wall (1991; Zbl 0741.14014).

(2) Show that under (1) the non-trivial 2-torsion points of \(J(\mathbb{R}) \) correspond to “signed quadratic representations” \(f = \pm q_1^2 \pm q_2^2 \pm q_3^2 \) with \(q_i \in \mathbb{R}[x, y, z] \), and the 2-torsion points in the non-identity component of \(J(\mathbb{R}) \) correspond to the representations with + signs. This is the essential new result of the paper. For the proof one needs the following exact sequences

\[
0 \to \text{Pic}(Q_r) \to \text{Pic}(Q) \to \text{Br}(\mathbb{R}) \to \text{Br}(Q_r),
\]

\[
0 \geq J(\mathbb{R})^0 \to J(\mathbb{R})^0 \to \text{Br}(\mathbb{R}) \to 0,
\]

where \(Q_r \) is the curve \(Q \) as a curve over \(\mathbb{R} \) such that \(Q = Q_r \otimes \mathbb{C} \).

The first exact sequence follows from Hochschild-Serre spectral sequence for étale cohomology, the second sequence follows from a theorem of G. Weichold (1883; JFM 15.0431.01) reproved by Geyer (1964).

Reviewer: Albrecht Pfister (Mainz)

MSC:
11E25 Sums of squares and representations by other particular quadratic forms
11E76 Forms of degree higher than two
14H40 Jacobians, Prym varieties

Full Text: DOI arXiv

References:
[1] Choi, M.D.; Lam, T.Y.; Reznick, B., Sums of squares of real polynomials, (.), 103-126 · Zbl 0821.11028
[6] Powers, V.; Reznick, B., Notes towards a constructive proof of Hilbert’s theorem on ternary quartics, (.), 209-227 · Zbl 1026.11044
[8] Swan, R.G., Hilbert’s theorem on positive ternary quartics, (), 287-292 · Zbl 1026.11045

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.