From the introduction: Determining the unknown frequencies in a trigonometric signal when the signal values are known is called the frequency analysis problem. One method for solving this problem is by using the asymptotic behavior of families of Szegő polynomials, which are monic orthogonal polynomials. The author uses the so-called T-process and constructs measures that can be applied in frequency analysis. The weak star convergence property is discussed along with boundedness properties. The final section deals with moments and the convergence rate.

MSC:

94A11 Application of orthogonal and other special functions
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis

Full Text: DOI

References:

[2] Jones, W.B.; Njåstad, O.; Waadeland, H., An alternative way of using szegő polynomials in frequency analysis, (), 141-151 · Zbl 0818.33004
[9] Petersen, V., A combination of two methods in frequency analysis, (), 399-408 · Zbl 0988.94004

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.