A subgroup H of an abelian group G is a ccs-subgroup of G if the natural map $\varphi : G \to G/H$ has a continuous cross section, i.e., a continuous map $\Gamma : (G/H)^\# \to G^\#$ such that $\varphi \circ \Gamma = \text{id}_{G/H}$. ($\#$ denotes the largest totally bounded topological group topology.) W. W. Comfort, S. Hernández, D. Remus and F. J. Trigos-Arrieta [Res. Expo. Math. 24, 57–76 (2001; Zbl 1014.22004)] introduced and studied the class of the ACCS((#) groups, that is, the class of groups H that are ccs-subgroups of any enveloping group G. In the present paper, necessary conditions for ccs-groups are given. This provides an upper bound for the size of the reduced groups (groups whose only divisible subgroup is $\{e\}$) in ACCS((#) so that the reduced groups in ACCS((#) form a set) and shows that large powers may belong to ACCS((#) only if they are divisible. This gives a large class of new examples of non ccs-subgroups. New properties of the class ACCS((#) are established, e.g., closure with the expectation of taking extensions and direct summands. This provides new examples of ccs-groups. For example, there exist c-many pairwise nonisomorphic rank-one torsion-free (reduced) groups and c-many pairwise nonisomorphic reduced groups, each of size c.

Reviewer: Sophia U. Raczkowski (Bakersfield)

MSC:

22A05 Structure of general topological groups
05D10 Ramsey theory
20K45 Topological methods for abelian groups
54H11 Topological groups (topological aspects)

Keywords:

Bohr topology; Ramsey theorem

Full Text: DOI Link

References:

[6] E.K. van Douwen, The maximal totally bounded group topology on (G) and the biggest minimal (G)-space for abelian groups (G), Topology Appl. 34 (1990), 69-91. - Zbl 0696.22003 · doi:10.1016/0166-8641(90)90090-O
[8] Helma Gladdines, Countable closed sets that are not a retract of $(G^\#)$, Topology Appl. 67 (1995), 81-84. - Zbl 0838.54024 · doi:10.1016/0166-8641(94)00052-0

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2021 FIZ Karlsruhe GmbH
Page 1
paper as accurately as possible without claiming the completeness or perfect precision of the matching.