Dryanov, Dimiter; Haußmann, Werner; Petrov, Petar

Best one-sided L^1-approximation by $B^{2,1}$-blending functions. (English) [Zbl 0991.41018]

This work presents a solution for an extension to a two-dimensional setting of the following classical problem. Let $f^{(n+1)} \geq 0$. Let I be the closed interval $[-1,1]$, and let P_n be the polynomials of degree not exceeding n. The one-dimensional problem is to characterize the best one-sided L_1 approximation to f from P_n. In this paper I is replaced with I^2; P_n is replaced with the blended functions,

$$B_{m,n} = \{ b : \frac{\delta^{m+n}}{\delta x^m \delta y^n} b = 0 \};$$

and f is replaced with a function g such that

$$\frac{\delta^{m+n}}{\delta x^m \delta y^n} g \geq 0.$$

This two-dimensional setting is complicated by the fact that $B_{m,n}$ is infinite dimensional. The authors contribute the first solution of this general setting by proving a characterization for the case, $m = 2$ and $n = 1$.

For the entire collection see [Zbl 0972.00049].

Reviewer: Daniel Wulbert (La Jolla)

MSC:

41A50 Best approximation, Chebyshev systems

Cited in 3 Documents