Narang, T. D.; Garg, S. K.
On the uniqueness of best approximation in non-Archimedean spaces. (English)
Zbl 0789.46066

A. F. Monna [Indag. Math. 30, 484–496 (1968; Zbl 0172.39302)] has shown that
1. No subspace other than the trivial one of a non-Archimedean normed linear space (n.a. n.l.s.) X over
a non-Archimedean non-trivially valued field K, can be Chebyshev and
2. Strict convexity in non-Archimedean normed linear spaces can not be defined analogously to that
available in normed linear spaces over the reals.

The authors first show by an example that a subset as against a subspace can be Chebyshev. They take
$X = Q_2$ (2-adic field) over itself and the subset to be $\{0, 1/2, 1/2^2, 1/2^3, 1/2^4, \ldots\}$. This subset is claimed
to be compact which is obviously wrong as it is not even bounded in X. The authors say that a n.a. n.l.s.
X such that $\|X\| = |K|$, is strictly convex if $\|x + y\| = \max(\|x\|, \|y\|)$ and $\|x\| = \|y\| = 1$ imply $x = y$.
They have shown that if the characteristic of the residue class field of K is 2 then no n.a.n.l.s. can be
strictly convex. Now let the characteristic be different from 2, and $\|X\| = |K|$. Choose $e, x \in X$ such
that $\|e\| = 1, \|x\| < 1$. Clearly $e + x \neq e - x$ while they meet the other requirements of the definition.
This means that no n.a.n.l.s. can be strictly convex in the sense of the definition given by the authors.

Reviewer: R. Bhaskaran (Madurai)

MSC:
46S10 Functional analysis over fields other than \mathbb{R} or \mathbb{C} or the quaternions; non-Archimedean func-
tional analysis
41A52 Uniqueness of best approximation

Keywords:
non-Archimedean normed linear space; non-Archimedean non-trivially valued field; Chebyshev; strictly
convex

Full Text: DOI

References:
Math.,30 (1968), 484–496.MR 40, 679. · Zbl 0172.39302
83j:46088. · Zbl 0499.46047
Zbl 0218.46004

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically
matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.