Recent advances in directional statistics. (English) [Zbl 07431351]
Test 30, No. 1, 1-58 (2021)

Summary: Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere, and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper, we provide a review of the many recent developments in the field since the publication of K. V. Mardia and P. E. Jupp [Directional statistics. Chichester: Wiley (2000; Zbl 0935.62065)], still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, space situational awareness, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments are discussed.

MSC:

62R30 Statistics on manifolds
62H11 Directional data; spatial statistics
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M30 Inference from spatial processes
62-02 Research exposition (monographs, survey articles) pertaining to statistics
62-04 Software, source code, etc. for problems pertaining to statistics

Keywords:
classification; clustering; dimension reduction; distributional models; exploratory data analysis; hypothesis tests; nonparametric methods; regression; serial dependence; software; spatial statistics

Software:
moveHMM; SiZer ; move; sphunif; CircOutlier; rotasym; rgl; DirStats; FCM4DD; rcosmo; BAMBI; VMF-SNE; bReeze; CircSIZER; circular; RiemBase; plot3D; CircStats; nprotreg; bpDir; movMF; geostats; sdetorus; Clustangles; PyCircStat; CircStat; CircSpaceTime; GeoPCA; shapes; CircNNTSR; season; FLightR; Directional; Mocapy ++; isocir; NHMSAR; R; depth

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2021 FIZ Karlsruhe GmbH
[113] Damon, J.; Marron, JS, Backwards principal component analysis and principal nested relations, J Math Imaging Vis, 50, 1, 107-114 (2014) - Zbl 1308.62124
[123] Dhillon, IS; Modha, DS, Concept decompositions for large sparse text data using clustering, Mach Learn, 42, 1, 143-175 (2001) - Zbl 0970.68167
[135] Di Marzio, M.; Fensore, S.; Panzera, A.; Taylor, CC, Kernel density classification for spherical data, Stat Probab Lett, 144,
Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2021 FIZ Karlsruhe GmbH
[202] Gatto, R., Multivariate saddlepoint tests on the mean direction of the von Mises-Fisher distribution, Metrika, 80, 6-8, 733-747 (2017) · Zbl 1392.62054
[231] Hernandez-Stumpfhauser, D.; Breidt, FJ; van der Woerd, MJ, The general projected normal distribution of arbitrary dimen-

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH Page 8
sion: modeling and Bayesian inference. Bayesian Anal, 12, 1, 113-133 (2017) · Zbl 1384.62176

[234] Hinkle, J.; Fletcher, PT; Joshi, S., Intrinsic polynomials for regression on Riemannian manifolds, J Math Imaging Vis, 50, 1, 32-52 (2014) · Zbl 1310.53038

[243] Horwood, JT; Poore, AB, Gauss von Mises distribution for improved uncertainty realism in space situational awareness, SIAM/ASA J Uncertain Quantif, 2, 1, 276-304 (2014) · Zbl 1308.62116

[261] Jamalamadaka, SR; Meintanis, S.; Verdéebout, T., On new Sobolev tests of uniformity on the circle with extension to the sphere, Bernoulli, 26, 3, 2226-2252 (2020) · Zbl 1361.62019

F (eds) Geometric science of information. Lecture notes in computer science, vol 11712. Springer, Cham, pp 685-694 - Zbl 1455.60089

Kent, JT; Ganeiber, AM; Mardia, KV, A new unified approach for the simulation of a wide class of directional distributions, J Comput Graph Stat, 27, 2, 291-301 (2018)

Kerkvcharian, G.; Pham Ngoc, TM; Picard, D., Localized spherical deconvolution, Ann Stat, 39, 2, 1042-1068 (2011) · Zbl 1216.62059

Kesemenen, O.; Tezel, O.; Özkul, E., Fuzzy $\langle c \rangle$-means clustering algorithm for directional data (FCM4DD), Expert Syst Appl, 58, 76-82 (2016)

Kim, NC; So, HJ, Directional statistical Gabor features for texture classification, Pattern Recognit Lett, 112, 18-26 (2018)

Kim, PT; Koo, JY, Optimal spherical deconvolution, J Multivar Anal, 80, 1, 21-42 (2002) · Zbl 0998.62030

Kim, PT; Koo, JY; Pham Ngoc, TM, Supersmooth testing on the sphere over analytic classes, J Nonparametr Stat, 28, 1, 84-115 (2016) · Zbl 1338.62132

Krausnauhler, B. Smolla M, Scharf AK (2020) move: visualizing and analyzing animal track data. R package version 4.0.4 https://CRAN.R-project.org/package=move

Kueh, A., Locally adaptive density estimation on the unit sphere using needlets, Constr Approx, 36, 3, 433-458 (2012) · Zbl 1275.42053

Kume, A.; Sei, T., On the exact maximum likelihood inference of Fisher-Bingham distributions using an adjusted holonomic

Lagona, F.; Picone, M., A latent-class model for clustering incomplete linear and circular data in marine studies, J Data Sci, 9, 4, 585-605 (2011)

Lagona, F.; Picone, M., Model-based clustering of multivariate skew data with circular components and missing values, J
Ley, C.; Verdebout, T., Simple optimal tests for circular reflective symmetry about a specified median direction, Stat Sin, 24, 7, 1223-1237 (2013) - Zbl 1431.62343

Laha, AK; Mahesh, KC, Robustness of tests for directional mean, Statistics, 49, 3, 522-536 (2015) - Zbl 1367.62082

Laha, AK; Raja, ACP; Mahesh, KC, SB-robust estimation of mean direction for some new circular distributions, Stat Pap, 60, 3, 527-552 (2019) - Zbl 1420.62238

Larsen, PV; Blaesild, P.; Sørensen, MK, Improved likelihood ratio tests on the von Mises-Fisher distribution, Biometrika, 89, 4, 947-951 (2002) - Zbl 1034.62044

Leguey, I.; Bielza, C.; Larrañaga, P., Circular Bayesian classifiers using wrapped Cauchy distributions, Data Knowl Eng, 122, 101-115 (2019)

Lennon, KP; Dahl, DB; Vannucci, M.; Tsai, JW, Density estimation for protein conformation angles using a bivariate von Mises distribution and Bayesian nonparametrics, J Am Stat Assoc, 104, 486, 586-596 (2009) - Zbl 1388.62255

Ley, C.; Verdebout, T., Simple optimal tests for circular reflective symmetry about a specified median direction, Stat Sin, 24, 3, 1319-1339 (2014) - Zbl 06431833

Ley, C.; Paindaveine, D.; Verdebout, T., High-dimensional tests for spherical location and spiked covariance, J Multivar Anal, 139, 79-91 (2015) - Zbl 1328.62325

Li, L., Moderate deviations results for a symmetry testing statistic based on the kernel density estimator for directional data, Commun Stat Theory Methods, 43, 14, 3007-3018 (2014) - Zbl 1297.62081

Liu, RY; Singh, K., Ordering directional data: concepts of data depth on circles and spheres, Ann Stat, 20, 3, 1468-1484 (1992) - Zbl 0766.62027

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH
[374] Mardia KV; Taylor, CC; Subramaniam, GK, Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data, Biometrics, 63, 2, 505-512 (2007) · Zbl 1136.62082
[381] Marron, JS; Alonso, AM, Overview of object oriented data analysis, Biomet J, 56, 5, 732-753 (2014) · Zbl 1309.62008

[413] Mulder, K.; Klugkist, I., Bayesian estimation and hypothesis tests for a circular generalized linear model, J Math Psychol, 80, 4-14 (2017) · Zbl 1397.91375

Nicholas A.; Duchesne, T.; Rivest, LP; Fortin, D., A general hidden state random walk model for animal movement, Comput Stat Data Anal, 105, 76-95 (2017) - Zbl 1466.62168

Oliveira, M.; Crujeiras, RM; Rodríguez-Casal, A., CircSiZer: an exploratory tool for circular data, Environ Ecol Stat, 21, 1, 143-159 (2014)

Ouakkache, K.; Rivest, LP, A new statistical model for random unit vectors, J Multivar Anal, 100, 1, 70-80 (2009) - Zbl 1151.62047

Paindaveine, D.; Verdebout, T., On high-dimensional sign tests, Bernoulli, 22, 3, 1745-1769 (2016) - Zbl 1360.62225

Panaretos, VM; Pham, T.; Yao, Z., Principal flows, J Am Stat Assoc, 109, 505, 424-436 (2014) - Zbl 1367.62187

Pardo, A.; Real, E.; Krishnaswamy, V.; López-Higuera, JM; Pogue, BW; Conde, OM, Directional kernel density estimation for classification of breast tissue spectra, IEEE Trans Med Imaging, 36, 1, 64-73 (2017)

Zbl 0992.62048

[57] Pewsey, A. The large-sample joint distribution of key circular statistics, Metrika, 60, 1, 25-32 (2004) · Zbl 1049.62063

[62] Pewsey, A.; Jones, MC. Discrimination between the von Mises and wrapped normal distributions: just how big does the
sample size have to be?; Statistics, 39, 2, 81-89 (2005) · Zbl 1115.62336

Stat Comput 26(6):1307-1317 · Zbl 06653303

[70] Porcu, E.; Bevilacqua, M.; Genton, MG. Spatio-temporal covariance and cross-covariance functions of the great circle distance

[71] Porcu E, Furrer R, Nychka D (2020) 30 years of space-time covariance functions. WIREs Comp Stat to appear:e1512

[72] Qiu, X.; Wu, S.; Wu, H., A new information criterion based on Langevin mixture distribution for clustering circular data with
application to time course genomic data, Stat Sin, 29, 4, 1459-1476 (2015) · Zbl 1377.62151

hits://www.R-project.org/

[74] Rachimberdiev, E.; Saveliev, A.; Piersma, T.; Karagicheva, J., FLightR: an R package for reconstructing animal paths from

[75] Ranalli, M.; Lagona, F.; Picone, M.; Zambianchi, E., Segmentation of sea current fields by cylindrical hidden Markov models:

[76] Rayleigh Lord (1919) On the problem of random vibrations, and of random flights in one, two, or three dimensions. Lond
Edinb Dublin Philos Mag J Sci 37(220):321-347 · Zbl 46.1203.03

[77] Reed, WJ; Pewsey, A., Two nested families of skew-symmetric circular distributions, TEST, 18, 3, 516-528 (2009) · Zbl 1121.62495

[78] Riccardi, L.; Nguyen, PH; Stock, G., Free-energy landscape of RNA hairpins constructed via dihedral angle principal component

[522] Sklar, M., Fonctions de répartition à \((n) \) dimensions et leurs marges, Publ Inst Stat Univ Paris, 8, 229-231 (1959) - Zbl 0100.14202

[536] Sun, SJ; Lockhart, RA, Bayesian optimality for Beran’s class of tests of uniformity around the circle, J Stat Plan Inference, 198, 79-90 (2019) - Zbl 1432.62314

[538] Taijeron, HJ; Gibson, AG; Chandler, C., Spline interpolation and smoothing on hyperspheres, SIAM J Sci Comput, 15, 5, 111-1125 (1994) - Zbl 0812.41009

