Ganzburg, M. I.

Best approximation of sums of elements and a theorem of Newman and Shapiro. (English. Russian original) [Zbl 0715.41037]

Let F be a normed space with norm $\|\cdot\|_F$, and let B be a subspace of F. For $f \in F$ we set $(1) \quad E(f, B, F) = \inf_{g \in B} \|f - g\|_F$. We consider the following problem: find the condition on the elements $f_k \in F$, $1 \leq k \leq N$, $N \geq 2$, under which we have the equality $(2) \quad E(\sum_{k=1}^N f_k, B, F) = \sum_{k=1}^N E(f_k, B, F)$. We obtain criteria for the equality (2) or for its integral analog to hold. As a consequence we present the known result of D. J. Newman and H. S. Shapiro [Duke Math. J. 30, No. 4, 673-681 (1963; Zbl 0116.04502)] on the validity of (2) in the case of the approximation of functions of m variables of the form $\sum_{k=1}^m \psi_k(x_k)$ by generalized polynomials in the uniform metric. It is shown that the variant of the Newman-Shapiro theorem, in the case of the approximation in the integral metric, does not hold. We also show an analog of the Newman-Shapiro theorem for the approximation by entire functions of exponential type.

MSC:

41A50 Best approximation, Chebyshev systems

Keywords:
Newman-Shapiro theorem; approximation by entire functions of exponential type

Full Text: DOI

References:

- Zbl 0116.04502 - doi:10.1215/S0012-7094-63-03071-0

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.