Pham, Cong-Dan

Some results on regularity and monotonicity of the speed for excited random walks in low dimensions. (English) Zbl 1478.60138

Summary: Using renewal times and Girsanov’s transform, we prove that the speed of the excited random walk is infinitely differentiable with respect to the bias parameter in $(0, 1)$ in dimension $d \geq 2$. At the critical point 0, using a special method, we also prove that the speed is differentiable and the derivative is positive for every dimension $2 \leq d \neq 3$. However, this is not enough to imply that the speed is increasing in a neighborhood of 0. It still remains to prove that the derivative is continuous at 0. Moreover, this paper gives some results of monotonicity for m-excited random walk when m is large enough.

MSC:

60G50 Sums of independent random variables; random walks
60K05 Renewal theory
60K37 Processes in random environments

Keywords:

Girsanov’s transform; excited random walks

Full Text: DOI

References:

[23] Pham, C.-D., Monotonicity and regularity of the speed for excited random walks in higher dimensions, Electron. J. Probab., 20, (2015) · Zbl 1326.60096

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.