Ajanki, Oskari H.; Erdős, László; Krüger, Torben
Universality for general Wigner-type matrices. (English) Zbl 1403.60010

The definition of Wigner matrices goes back to the revolutionary 1958 paper of E. P. Wigner [Ann. Math. (2) 67, 325–327 (1958; Zbl 0085.13203)]. Ever since random matrices have attracted considerable attention and the last decade has seen several groundbreaking results. Let $H = H^* \in \mathbb{C}^{N \times N}$ be a random $N \times N$ Hermitian matrix with independent and centered entries. The matrix of variances $v_{ij} = \mathbb{E}[|h_{ij}|^2]$ is not assumed to be stochastic, and so the density of states is not Wigner’s semicircle law. The authors demonstrate that as the matrix dimension N tends to infinity, the resolvent $z \mapsto (H - z)^{-1}$ converges to a diagonal matrix with entries $m_1(z), \ldots, m_N(z)$ satisfying for each i the equation

$$-m_i(z)^{-1} = z + \sum_j v_{ij}m_j(z).$$

The latter equation has been analyzed in [“Quadratic vector equations on complex upper half-plane”, Preprint, arXiv:1506.05095] by the first author et al. In this manuscript, the authors prove a local law down to the smallest spectral resolution scale as well as bulk universality for both real symmetric and complex Hermitian symmetry classes.

Reviewer: Joscha Prochno (Graz)

MSC:
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)

Keywords:
eigenvector delocalization; rigidity; anisotropic local law; local spectral statistics

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.