Almkvist, Gert
Proof of a conjecture about unimodal polynomials. (English) Zbl 0678.05002

The author investigates the well-known conjecture that the polynomial \(\prod_{r=1}^{n} (1-t^{n-r^2})/(1-t^r) \) is symmetric unimodal if \(n \) is even and \(r \geq 1 \), or \(n \) is odd and \(r \geq 11 \). It is proved that conjecture is true for \(3 \leq n \leq 20 \) and for \(n = 100 \) and \(n = 101 \). The method of proof makes use of a clever induction for “large” \(r \), say \(r \geq r_0(n) \), where \(r_0(n) \approx 10 \) for large \(n \). As by-product in the course of proof, two elegant inequalities for Chebyshev polynomials are obtained, namely \(|U_{n-1}(x)| \leq n^2x^2 \) and \(|T_n'(x)| \leq n^{1+x^2} (|x| \leq 1) \).

Reviewer: L.C.Hsu

MSC:
05A10 Factorials, binomial coefficients, combinatorial functions
05A17 Combinatorial aspects of partitions of integers
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Keywords:
unimodal polynomial; number of restrictive partitions; Chebyshev polynomials

Full Text: DOI

References:
[1] Abramowitz, M.; Segun, I.A., ()

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.