A Lefschetz fibration on a closed, smooth, oriented 4-manifold X is a smooth surjective map $f : X \to S^2$ whose critical locus consists of finitely many points p_i, such that at p_i and at $f(p_i)$ there are local complex coordinates with respect to which f takes the form $(z_1, z_2) \mapsto z_1 z_2$. The pair (X, f) is called a genus-g Lefschetz fibration for the genus g of a regular fiber F of f. A common way to construct new Lefschetz fibrations is the fiber sum operation. If (X_i, f_i) is a genus-g Lefschetz fibration with regular fiber F_i for $i = 1, 2$, then the fiber sum is a genus-g Lefschetz fibration f on $X = (X_1, F_1)\# \varphi(X_2, F_2)$, obtained by removing a fibered tubular neighborhood of each F_i and then identifying the resulting boundaries via complex conjugation on S^1 times a chosen orientation preserving diffeomorphism $\varphi : F_1 \to F_2$. A Lefschetz fibration (X, f) is said to be indecomposable if it cannot be expressed as a fiber sum.

A Lefschetz fibration (X, f) is called minimal if there are no exceptional spheres contained in the fibers. If Σ_g^m is a compact, connected, oriented surface of genus g with m boundary components, then the group Γ^m_g, composed of orientation-preserving self-homeomorphisms of Σ_g^m which restrict to the identity along $\partial \Sigma_g^m$, as well, is called the mapping class group. If $t_c \in \Gamma^m_g$ is the positive Dehn twist along the simple closed curve $c \subset \Sigma_g^m$, $\{c_i\}$ is a nonempty collection of simple closed curves on Σ_g^m, $\{\delta_j\}$ is a collection of m curves parallel to distinct boundary components of Σ_g^m, $\{k_j\}$ is a collection of m integers, and the relation $t_{c_1} \cdots t_{c_l} t_{c_1} = t_{k_1} \cdots t_{k_m} t_{k_1}$ holds in Γ^m_g, then $t_{c_1} \cdots t_{c_l} t_{c_1}$ is called a positive factorization of length l of the mapping class $t_{k_1} \cdots t_{k_m}$ in Γ^m_g. Existence of minimal symplectic structures on 4-manifolds is a fundamental question in smooth 4-manifold topology. There has been much interest in producing minimal symplectic 4-manifolds in the homeomorphism classes of standard simply-connected 4-manifolds with small second homology, such as blow-ups of \mathbb{CP}^2 or $3\mathbb{CP}^2$.

In this paper, the authors demonstrate ways to construct positive factorization for Lefschetz fibrations with small number of critical points, as they correspond to 4-manifolds with small second homology which allow to provide simple descriptions of many new small exotic 4-manifolds. The authors show that there exist decomposable genus-2 Lefschetz fibrations whose total spaces are minimal symplectic 4-manifolds homeomorphic but not diffeomorphic to complex rational surfaces $\mathbb{CP}^2\#p\overline{\mathbb{CP}}^2$ for $p = 7, 8, 9$, and to $3\mathbb{CP}^2\#q\overline{\mathbb{CP}}^2$ for $q = 12, \ldots, 19$, and describe all the genus-2 Lefschetz fibrations explicitly via positive factorizations in the mapping class group of a genus-2 surface with one boundary component. They also show that any simply-connected minimal genus-2 Lefschetz fibration (X, f) with $b^+ (X) \leq 3$ is homeomorphic to $\mathbb{CP}^2\#p\overline{\mathbb{CP}}^2$ for some $7 \leq p \leq 9$, or to $3\mathbb{CP}^2\#q\overline{\mathbb{CP}}^2$ for $12 \leq q \leq 19$. Finally, they prove that there exist decomposable minimal genus-2 Lefschetz fibrations over T^2 and σ_2 which are equivalent via Luttinger surgeries to minimal symplectic 4-manifolds $\mathbb{CP}^2\#4\overline{\mathbb{CP}}^2$ and $3\mathbb{CP}^2\#6\overline{\mathbb{CP}}^2$, respectively.

Reviewer: Andrew Bucki (Edmond)

MSC:

57R17 Symplectic and contact topology in high or arbitrary dimension
57R57 Applications of global analysis to structures on manifolds
53D35 Global theory of symplectic and contact manifolds

Keywords:

Lefschetz fibration; minimal fibration; fiber sum; indecomposable fibration; exotic manifold; mapping class group; positive factorization

Full Text: DOI arXiv

References:

[1] Akhmedov, A; Baykur, RI; Park, D, Constructing infinitely many smooth structures on small 4-manifolds, J. Topol., 1,

[7] S. Baldrige and P. Kirk, A symplectic manifold homeomorphic but not diffeomorphic to (\mathbb{CP}^2) # 3, the Heidelberg Academy of Sciences and Humanities

