Han, Xiaolong

Let Δ be the scalar Laplacian of a smooth compact Riemannian manifold (M, g) of dimension n without boundary. Let $\{u_j\}$ for $j = 1, 2, \ldots$ be the normalized L^2 eigenvalues so $\Delta u_j = \lambda_j^2 u_j$, where $0 = \lambda_0 < \lambda_1 < \ldots$. One knows (see C. D. Sogge [Duke Math. J. 53, 43-65 (1986; Zbl 0636.42018); J. Funct. Anal. 77, No. 1, 123–138 (1988; Zbl 0641.46011)]) that $\|u_j\|_p \lesssim \lambda_j^{\sigma(p)}$ for suitably chosen $\sigma(p)$. Take (M, g) to be the standard sphere with the round metric. Let \mathbb{H}_k be the set of homogeneous harmonic polynomials of degree k; these restrict to eigenfunctions on the sphere with associated eigenvalue $k(k+1)$; the multiplicity of this eigenvalue is given by $\dim(\mathbb{H}_k) = 2k + 1$ and every eigenfunction arises in this way. In relation to Sogge’s estimate, the authors show the following theorem.

Theorem. There exists a constant $0 < D < 1$ so that, for all $k \geq 0$, if m is the greatest integer not greater than $D(2k + 1)$, then one can find an orthonormal set $\{u_i\}$ for $1 \leq i \leq m$ in \mathbb{H}_k such that $\|u_i\|_p \geq \frac{1}{2} C_p k^{\sigma(p)}$ for all i and for $2 < p \leq 6$. For example, $D = \frac{1}{3m}$ will do.

Reviewer: Peter B. Gilkey (Eugene)

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
33C55 Spherical harmonics
58J50 Spectral problems; spectral geometry; scattering theory on manifolds

Keywords:
eigenfunction estimates; spherical harmonics; maximal L^p norm growth; density

Full Text: DOI

References:

1018.58010

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.