Let $C(K)$ denote the space of all continuous real-valued functions on a compact subset K of \mathbb{R}^s ($s \geq 1$), satisfying $K = \text{int}(K)$. Let $W_\infty = \{ w \in L_\infty(K) : w > 0 \text{ on } K \}$, where $\|f\|_w = \int_K |f|w \ d\mu$ (μ denotes the Lebesgue measure in \mathbb{R}^s). A finite dimensional subspace U of $C(K)$ is said to be Chebyshev in $C_w(K)$ if every $f \in C(k)$ has a unique best approximation from U with respect to the above norm. For $f \in C(K)$ let $Z(f) = \{ x \in K : f(x) = 0 \}$. For a subspace U of $C(K)$ let $U^* = \{ g \in C(K) : |g| \equiv |u| \text{ on } K \text{ for some } u \in U \}$. A finite-dimensional subspace U of $C(K)$ is called an A-space (or is said to have the A-property) if for any $g \in U^* \setminus \{0\}$ there exists $u \in U \setminus \{0\}$ such that $u = 0$ a.e. on $Z(g)$ and $ug \geq 0$ on K. Finally, let us denote by (S) the following condition on a subset W of W_∞: “For a bounded measurable function q, $\int_K wq \ d\mu \geq 0$ for all $w \in W$ implies $q \geq 0$ a.e. on K.” In this paper the author characterizes $W \subseteq W_\infty$ so that the A-property is necessary for U to be Chebyshev in $C_w(K)$ for all $w \in W$. He proves that if W is a convex cone in W_∞ satisfying condition (S) then every finite-dimensional subspace U of $C(K)$ that is Chebyshev in $C_w(K)$ for all $w \in W$ is an A-space. He also proves that a finite-dimensional subspace U of $C(K)$ is Chebyshev in $C_w(K)$ for all $w \in W_\infty$ if and only if for every $g \in U^* \setminus \{0\}$, 0 is not a best approximation to g from U relative to norm $\| \cdot \|_w$.

Reviewer: C.G.Lascarides

MSC:
41A52 Uniqueness of best approximation
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
41A50 Best approximation, Chebyshev systems

Keywords:
Chebyshev subspace; A-space; A-property; bounded measurable function

Full Text: DOI