Oh, Seungrohk; Khalil, Hassan K.
Nonlinear output-feedback tracking using high-gain observer and variable structure control.
(English) [Zbl 0890.93049]
Automatica 33, No. 10, 1845-1856 (1997).

The authors consider a single-input-single-output nonlinear system represented by the nth order differential equation
\[y^{(n)} = f(\cdot) + g(\cdot)u^{(m)}, \]
where \(u \) is the control input, \(y \) is the measured output, \(u^{(i)} \) and \(y^{(i)} \) denote the ith derivatives of \(u \) and \(y \), respectively, and \(m < n \).

The paper designs a globally bounded output-feedback variable structure controller that ensures tracking of the reference signal in the presence of unknown time-varying disturbance and modelling errors.

Reviewer: M. Megan (Timișoara)

MSC:
93C10 Nonlinear systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
93B12 Variable structure systems

Keywords:
feedback linearization; high-gain observer; semiglobal tracking; globally bounded output-feedback; variable structure controller

Full Text: DOI

References:
control, 41, 177-188, (1996) · Zbl 0842.93033

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.