×
Compute Distance To:
Author ID: wang.yingqian Recent zbMATH articles by "Wang, Yingqian"
Published as: Wang, Yingqian; Wang, Ying Qian; Wang, YingQian; Wang, Ying-Qian
External Links: ORCID · ResearchGate · dblp
Documents Indexed: 77 Publications since 1999
Co-Authors: 44 Co-Authors with 65 Joint Publications
1,177 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

53 Publications have been cited 333 times in 182 Documents Cited by Year
Super restricted edge-connectivity of vertex-transitive graphs. Zbl 1056.05092
Wang, Ying Qian
27
2004
Planar graphs without cycles of length 4 or 5 are (3,0,0)-colorable. Zbl 1281.05055
Hill, Owen; Smith, Diana; Wang, Yingqian; Xu, Lingji; Yu, Gexin
19
2013
Total colorings of planar graphs with maximum degree at least 8. Zbl 1190.05073
Shen, Lan; Wang, YingQian
17
2009
Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable. Zbl 1209.05077
Du, Dingzhu; Shen, Lan; Wang, Yingqian
16
2009
Every planar graph with cycles of length neither 4 nor 5 is \((1,1,0)\)-colorable. Zbl 1309.05058
Xu, Lingji; Miao, Zhengke; Wang, Yingqian
15
2014
Improper choosability of planar graphs without 4-cycles. Zbl 1291.05077
Wang, Yingqian; Xu, Lingji
15
2013
Decomposing a planar graph with girth at least 8 into a forest and a matching. Zbl 1223.05047
Wang, Yingqian; Zhang, Qijun
15
2011
On the 7 total colorability of planar graphs with maximum degree 6 and without 4-cycles. Zbl 1221.05164
Shen, Lan; Wang, Yingqian
13
2009
Planar graphs without cycles of length 4 or 5 are \((2, 0, 0)\)-colorable. Zbl 1327.05073
Chen, Ming; Wang, Yingqian; Liu, Peipei; Xu, Jinghan
11
2016
Super-edge-connectivity properties of graphs with diameter 2. Zbl 0967.05042
Wang, Yingqian; Li, Qiao
11
1999
A sufficient condition for a plane graph with maximum degree 6 to be class 1. Zbl 1254.05060
Wang, Yingqian; Xu, Lingji
10
2013
A note on 3-choosability of planar graphs. Zbl 1183.05023
Wang, Yingqian; Lu, Huajing; Chen, Ming
10
2008
Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable. Zbl 1210.05029
Wang, Yingqian; Wu, Qian; Shen, Liang
9
2011
A sufficient condition for a planar graph to be 3-choosable. Zbl 1183.05022
Shen, Liang; Wang, Yingqian
9
2007
On the 9-total-colorability of planar graphs with maximum degree 8 and without intersecting triangles. Zbl 1173.05323
Shen, Lan; Wang, Yingqian; Wang, Weifan; Lih, Ko-Wei
8
2009
Planar graphs without 4-cycles adjacent to triangles are 4-choosable. Zbl 1343.05053
Cheng, Panpan; Chen, Min; Wang, Yingqian
8
2016
On total chromatic number of planar graphs without 4-cycles. Zbl 1122.05037
Wang, Ying-Qian; Shangguan, Min-Le; Li, Qiao
8
2007
Plane graphs with maximum degree \(\Delta \geq 8\) are entirely (\(\Delta +3\))-colorable. Zbl 1269.05042
Wang, Yingqian; Mao, Xianghua; Miao, Zhengke
7
2013
Decomposing a planar graph without cycles of length 5 into a matching and a 3-colorable graph. Zbl 1301.05273
Wang, Yingqian; Xu, Jinghan
6
2015
Planar graphs with cycles of length neither 4 nor 6 are \((2,0,0)\)-colorable. Zbl 1285.05071
Wang, Yingqian; Xu, Jinghan
6
2013
On 3-colorability of planar graphs without adjacent short cycles. Zbl 1194.05045
Wang, Ying Qian; Mao, Xiang Hua; Lu, Hua Jing; Wang, Wei Fan
6
2010
On the diameter of generalized Kneser graphs. Zbl 1172.05029
Chen, Yongzhu; Wang, Yingqian
6
2008
Improper colorability of planar graphs without prescribed short cycles. Zbl 1283.05114
Wang, Yingqian; Xu, Jinghan
5
2014
Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable. Zbl 1220.05028
Shen, Lan; Wang, Yingqian
5
2010
Upper bound on the third edge-connectivity of graphs. Zbl 1085.05041
Wang, Yingqian; Li, Qiao
5
2005
Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable. Zbl 1228.05131
Wang, Yingqian; Lu, Huajing; Chen, Ming
5
2010
The 3-colorability of planar graphs without cycles of length 4, 6 and 9. Zbl 1322.05043
Kang, Yingli; Jin, Ligang; Wang, Yingqian
4
2016
Planar graphs with cycles of length neither 4 nor 7 are \((3,0,0)\)-colorable. Zbl 1288.05094
Li, Huihui; Xu, Jinghan; Wang, Yingqian
4
2014
A relaxation of Havel’s 3-color problem. Zbl 1185.05062
Montassier, Mickaël; Raspaud, André; Wang, Weifan; Wang, Yingqian
4
2008
On the 3-colorability of planar graphs without 4-, 7- and 9-cycles. Zbl 1209.05092
Lu, Huajing; Wang, Yingqian; Wang, Weifan; Bu, Yuehua; Montassier, Mickaël; Raspaud, André
4
2009
Linear coloring of sparse graphs. Zbl 1239.05076
Wang, Yingqian; Wu, Qian
4
2012
A sufficient condition for the equality between the restricted edge-connectivity and the minimum edge-degree of graphs. Zbl 0988.05059
Wang, Yingqian; Li, Qiao
3
2001
Acyclic edge coloring of sparse graphs. Zbl 1270.05049
Wang, Yingqian; Sheng, Ping
3
2012
\((1,0,0)\)-colorability of planar graphs without cycles of length 4, 5 or 9. Zbl 1288.05105
Wang, Yingqian; Yang, Yaochou
3
2014
Planar graphs without 3-cycles adjacent to cycles of length 3 or 5 are \((3, 1)\)-colorable. Zbl 1378.05070
Miao, Zhengke; Wang, Yingqian; Zhang, Chuanni; Zhang, Huajun
3
2018
Distance constraints on short cycles for 3-colorability of planar graphs. Zbl 1321.05070
Kang, Yingli; Wang, Yingqian
3
2015
On acyclic edge coloring of planar graphs without intersecting triangles. Zbl 1238.05101
Sheng, Ping; Wang, Yingqian
3
2011
Optimization problems of the third edge-connectivity of graphs. Zbl 1108.05056
Wang, Yingqian
2
2006
On 3-choosability of planar graphs without 5-, 6- or 7-cycles. Zbl 1374.05070
Li, Xiaoyan; Chen, Min; Wang, Yingqian
2
2016
Every planar graph without cycles of length 4 or 9 is \((1, 1, 0)\)-colorable. Zbl 1365.05087
Dai, Lifeng; Wang, Yingqian; Xu, Jinghan
2
2017
Planar graphs without adjacent cycles of length at most five are \((1,1,0)\)-colorable. Zbl 1343.05054
Zhang, Chuanni; Wang, Yingqian; Chen, Min
2
2016
Sufficient conditions for a planar graph to be list edge \(\Delta \)-colorable and list totally \((\Delta +1)\)-colorable. Zbl 1262.05058
Lu, Qiuli; Miao, Zhengke; Wang, Yingqian
2
2013
Another regular Menon-type identity in residually finite Dedekind domains. Zbl 1474.11009
Ji, Ch.; Wang, Y.
2
2020
Improper colorability of planar graphs with cycles of length neither 4 nor 6. Zbl 07449110
Xu, Lingji; Wang, Yingqian
2
2013
\((\Delta + 1)\)-total-colorability of plane graphs with maximum degree \(\Delta\) at least 6 and without adjacent short cycles. Zbl 1234.05108
Zhang, Jingwen; Wang, Yingqian
1
2010
Nearly regular complete bipartite graphs are locally most reliable. Zbl 1058.05047
Wang, Yingqian
1
2003
A note on 3-choosability of planar graphs. Zbl 1363.05050
Li, Xiaoyan; Wang, Yingqian
1
2016
\((1,0,0)\)-colorability of planar graphs without prescribed short cycles. Zbl 1331.90061
Bu, Yuehua; Xu, Jinghan; Wang, Yingqian
1
2015
Planar graphs without cycles of length \(4\), \(5\), \(8\) or \(10\) are \(3\)-choosable. Zbl 1283.05113
Wang, Yingqian; Wu, Qian
1
2011
Plane graphs without cycles of length 4, 6, 7 or 8 are 3-colorable. Zbl 1203.05060
Wang, Yingqian; Chen, Ming; Shen, Liang
1
2008
A note on totally coloring of planar graphs. Zbl 1174.05358
Chen, Ming; Wang, Yingqian
1
2007
Plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are 3-colorable. Zbl 1369.05049
Jin, Ligang; Kang, Yingli; Schubert, Michael; Wang, Yingqian
1
2017
Planar graphs without cycles of length from 4 to 6 are \((1,0,0)\)-colorable. Zbl 07449129
Wang, Yingqian; Jin, Ligang; Kang, Yingli
1
2013
Another regular Menon-type identity in residually finite Dedekind domains. Zbl 1474.11009
Ji, Ch.; Wang, Y.
2
2020
Planar graphs without 3-cycles adjacent to cycles of length 3 or 5 are \((3, 1)\)-colorable. Zbl 1378.05070
Miao, Zhengke; Wang, Yingqian; Zhang, Chuanni; Zhang, Huajun
3
2018
Every planar graph without cycles of length 4 or 9 is \((1, 1, 0)\)-colorable. Zbl 1365.05087
Dai, Lifeng; Wang, Yingqian; Xu, Jinghan
2
2017
Plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are 3-colorable. Zbl 1369.05049
Jin, Ligang; Kang, Yingli; Schubert, Michael; Wang, Yingqian
1
2017
Planar graphs without cycles of length 4 or 5 are \((2, 0, 0)\)-colorable. Zbl 1327.05073
Chen, Ming; Wang, Yingqian; Liu, Peipei; Xu, Jinghan
11
2016
Planar graphs without 4-cycles adjacent to triangles are 4-choosable. Zbl 1343.05053
Cheng, Panpan; Chen, Min; Wang, Yingqian
8
2016
The 3-colorability of planar graphs without cycles of length 4, 6 and 9. Zbl 1322.05043
Kang, Yingli; Jin, Ligang; Wang, Yingqian
4
2016
On 3-choosability of planar graphs without 5-, 6- or 7-cycles. Zbl 1374.05070
Li, Xiaoyan; Chen, Min; Wang, Yingqian
2
2016
Planar graphs without adjacent cycles of length at most five are \((1,1,0)\)-colorable. Zbl 1343.05054
Zhang, Chuanni; Wang, Yingqian; Chen, Min
2
2016
A note on 3-choosability of planar graphs. Zbl 1363.05050
Li, Xiaoyan; Wang, Yingqian
1
2016
Decomposing a planar graph without cycles of length 5 into a matching and a 3-colorable graph. Zbl 1301.05273
Wang, Yingqian; Xu, Jinghan
6
2015
Distance constraints on short cycles for 3-colorability of planar graphs. Zbl 1321.05070
Kang, Yingli; Wang, Yingqian
3
2015
\((1,0,0)\)-colorability of planar graphs without prescribed short cycles. Zbl 1331.90061
Bu, Yuehua; Xu, Jinghan; Wang, Yingqian
1
2015
Every planar graph with cycles of length neither 4 nor 5 is \((1,1,0)\)-colorable. Zbl 1309.05058
Xu, Lingji; Miao, Zhengke; Wang, Yingqian
15
2014
Improper colorability of planar graphs without prescribed short cycles. Zbl 1283.05114
Wang, Yingqian; Xu, Jinghan
5
2014
Planar graphs with cycles of length neither 4 nor 7 are \((3,0,0)\)-colorable. Zbl 1288.05094
Li, Huihui; Xu, Jinghan; Wang, Yingqian
4
2014
\((1,0,0)\)-colorability of planar graphs without cycles of length 4, 5 or 9. Zbl 1288.05105
Wang, Yingqian; Yang, Yaochou
3
2014
Planar graphs without cycles of length 4 or 5 are (3,0,0)-colorable. Zbl 1281.05055
Hill, Owen; Smith, Diana; Wang, Yingqian; Xu, Lingji; Yu, Gexin
19
2013
Improper choosability of planar graphs without 4-cycles. Zbl 1291.05077
Wang, Yingqian; Xu, Lingji
15
2013
A sufficient condition for a plane graph with maximum degree 6 to be class 1. Zbl 1254.05060
Wang, Yingqian; Xu, Lingji
10
2013
Plane graphs with maximum degree \(\Delta \geq 8\) are entirely (\(\Delta +3\))-colorable. Zbl 1269.05042
Wang, Yingqian; Mao, Xianghua; Miao, Zhengke
7
2013
Planar graphs with cycles of length neither 4 nor 6 are \((2,0,0)\)-colorable. Zbl 1285.05071
Wang, Yingqian; Xu, Jinghan
6
2013
Sufficient conditions for a planar graph to be list edge \(\Delta \)-colorable and list totally \((\Delta +1)\)-colorable. Zbl 1262.05058
Lu, Qiuli; Miao, Zhengke; Wang, Yingqian
2
2013
Improper colorability of planar graphs with cycles of length neither 4 nor 6. Zbl 07449110
Xu, Lingji; Wang, Yingqian
2
2013
Planar graphs without cycles of length from 4 to 6 are \((1,0,0)\)-colorable. Zbl 07449129
Wang, Yingqian; Jin, Ligang; Kang, Yingli
1
2013
Linear coloring of sparse graphs. Zbl 1239.05076
Wang, Yingqian; Wu, Qian
4
2012
Acyclic edge coloring of sparse graphs. Zbl 1270.05049
Wang, Yingqian; Sheng, Ping
3
2012
Decomposing a planar graph with girth at least 8 into a forest and a matching. Zbl 1223.05047
Wang, Yingqian; Zhang, Qijun
15
2011
Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable. Zbl 1210.05029
Wang, Yingqian; Wu, Qian; Shen, Liang
9
2011
On acyclic edge coloring of planar graphs without intersecting triangles. Zbl 1238.05101
Sheng, Ping; Wang, Yingqian
3
2011
Planar graphs without cycles of length \(4\), \(5\), \(8\) or \(10\) are \(3\)-choosable. Zbl 1283.05113
Wang, Yingqian; Wu, Qian
1
2011
On 3-colorability of planar graphs without adjacent short cycles. Zbl 1194.05045
Wang, Ying Qian; Mao, Xiang Hua; Lu, Hua Jing; Wang, Wei Fan
6
2010
Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable. Zbl 1220.05028
Shen, Lan; Wang, Yingqian
5
2010
Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable. Zbl 1228.05131
Wang, Yingqian; Lu, Huajing; Chen, Ming
5
2010
\((\Delta + 1)\)-total-colorability of plane graphs with maximum degree \(\Delta\) at least 6 and without adjacent short cycles. Zbl 1234.05108
Zhang, Jingwen; Wang, Yingqian
1
2010
Total colorings of planar graphs with maximum degree at least 8. Zbl 1190.05073
Shen, Lan; Wang, YingQian
17
2009
Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable. Zbl 1209.05077
Du, Dingzhu; Shen, Lan; Wang, Yingqian
16
2009
On the 7 total colorability of planar graphs with maximum degree 6 and without 4-cycles. Zbl 1221.05164
Shen, Lan; Wang, Yingqian
13
2009
On the 9-total-colorability of planar graphs with maximum degree 8 and without intersecting triangles. Zbl 1173.05323
Shen, Lan; Wang, Yingqian; Wang, Weifan; Lih, Ko-Wei
8
2009
On the 3-colorability of planar graphs without 4-, 7- and 9-cycles. Zbl 1209.05092
Lu, Huajing; Wang, Yingqian; Wang, Weifan; Bu, Yuehua; Montassier, Mickaël; Raspaud, André
4
2009
A note on 3-choosability of planar graphs. Zbl 1183.05023
Wang, Yingqian; Lu, Huajing; Chen, Ming
10
2008
On the diameter of generalized Kneser graphs. Zbl 1172.05029
Chen, Yongzhu; Wang, Yingqian
6
2008
A relaxation of Havel’s 3-color problem. Zbl 1185.05062
Montassier, Mickaël; Raspaud, André; Wang, Weifan; Wang, Yingqian
4
2008
Plane graphs without cycles of length 4, 6, 7 or 8 are 3-colorable. Zbl 1203.05060
Wang, Yingqian; Chen, Ming; Shen, Liang
1
2008
A sufficient condition for a planar graph to be 3-choosable. Zbl 1183.05022
Shen, Liang; Wang, Yingqian
9
2007
On total chromatic number of planar graphs without 4-cycles. Zbl 1122.05037
Wang, Ying-Qian; Shangguan, Min-Le; Li, Qiao
8
2007
A note on totally coloring of planar graphs. Zbl 1174.05358
Chen, Ming; Wang, Yingqian
1
2007
Optimization problems of the third edge-connectivity of graphs. Zbl 1108.05056
Wang, Yingqian
2
2006
Upper bound on the third edge-connectivity of graphs. Zbl 1085.05041
Wang, Yingqian; Li, Qiao
5
2005
Super restricted edge-connectivity of vertex-transitive graphs. Zbl 1056.05092
Wang, Ying Qian
27
2004
Nearly regular complete bipartite graphs are locally most reliable. Zbl 1058.05047
Wang, Yingqian
1
2003
A sufficient condition for the equality between the restricted edge-connectivity and the minimum edge-degree of graphs. Zbl 0988.05059
Wang, Yingqian; Li, Qiao
3
2001
Super-edge-connectivity properties of graphs with diameter 2. Zbl 0967.05042
Wang, Yingqian; Li, Qiao
11
1999
all top 5

Cited by 236 Authors

29 Wang, Yingqian
20 Wu, Jian-Liang
11 Wang, Wei-Fan
11 Yu, Gexin
10 Liu, Runrun
10 Wang, Huijuan
9 Wang, Yiqiao
8 Li, Xiangwen
7 Volkmann, Lutz
7 Xu, Jinghan
6 Chen, Min
6 Kang, Yingli
6 Liu, Bin
6 Meng, Jixiang
6 Nakprasit, Kittikorn
6 Raspaud, André
6 Wang, Bing
5 Hellwig, Angelika
5 Hu, Xiaoxue
5 Jin, Ligang
5 Shen, Lan
5 Sittitrai, Pongpat
4 Balbuena, Camino
4 Chen, Ming
4 Czap, Július
4 Montassier, Mickaël
4 Sun, Lin
4 Zhang, Heping
4 Zhu, Xuding
3 Borodin, Oleg Veniaminovich
3 Cai, Hua
3 Gao, Hongwei
3 Huang, Ziwen
3 Jendrol’, Stanislav
3 Kim, Seog-Jin
3 Kostochka, Aleksandr Vasil’evich
3 Lu, Huajing
3 Tian, Yingzhi
3 West, Douglas Brent
3 Wu, Weili
3 Xu, Junming
3 Yin, Yuxue
3 Zhang, Haihui
3 Zhang, Zhao
2 Bu, Yuehua
2 Cai, Jiansheng
2 Chang, Gerard Jennhwa
2 Chang, Jian
2 Charpentier, Clément
2 Dankelmann, Peter
2 Dong, Wei
2 García-Vázquez, Pedro
2 Gu, Yan
2 Guo, Xiaofeng
2 Hou, Jianfeng
2 Hsieh, Sun-Yuan
2 Huang, Danjun
2 Key, Jennifer D.
2 Lin, Wensong
2 Liu, Chun-Hung
2 Liu, Peipei
2 Loeb, Sarah J.
2 Marcote, Xavier
2 Rautenbach, Dieter
2 Rodrigues, Bernardo Gabriel
2 Roussel, Nicolas
2 Shang, Li
2 Sheng, Ping
2 Shu, Qiaojun
2 Steffen, Eckhard
2 Sun, Wuyang
2 Wang, Dajin
2 Wang, Guanghui
2 Wu, Lidong
2 Wu, Qian
2 Yan, Guiying
2 Yang, Weihua
2 Zhang, Chuanni
2 Zhang, Wenwen
2 Zhou, Jinxin
1 A, Yongga
1 Agong, Louis Anthony
1 Alishahi, Meysam
1 Amarra, Carmen
1 Armstrong, Addie
1 Bai, Ying
1 Balogh, József
1 Bartnicki, Tomasz
1 Benson, Katherine F.
1 Borowiecka-Olszewska, Marta
1 Bosek, Bartłomiej
1 Cao, Yan
1 Caughman, John S. IV
1 Cera, Martín
1 Chang, Nai-Wen
1 Chen, Guantao
1 Chen, Jinyang
1 Chen, Xing
1 Chen, Yongzhu
1 Cheng, Eddie
...and 136 more Authors

Citations by Year