×

zbMATH — the first resource for mathematics

Tyszka, Apoloniusz

Compute Distance To:
Author ID: tyszka.apoloniusz Recent zbMATH articles by "Tyszka, Apoloniusz"
Published as: Tyszka, A.; Tyszka, Apoloniusz
Documents Indexed: 34 Publications since 1992
Reviewing Activity: 1 Review

Publications by Year

Citations contained in zbMATH

11 Publications have been cited 13 times in 8 Documents Cited by Year
Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the modulus of integer solutions, if these solutions form a finite set? Zbl 1288.11116
Tyszka, Apoloniusz
2
2013
Beckman-Quarles type theorems for mappings from \(\mathbb{R}^n\) to \(\mathbb{C}^n\). Zbl 1054.51011
Tyszka, Apoloniusz
2
2004
Conjecturally computable functions which unconditionally do not have any finite-fold Diophantine representation. Zbl 1285.11147
Tyszka, Apoloniusz
1
2013
A conjecture on integer arithmetic which implies that there is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, rational) solutions, if these solutions form a finite set. Zbl 1301.11080
Tyszka, Apoloniusz; Sporysz, Maciej; Peszek, Agnieszka
1
2013
An algorithm which transforms any Diophantine equation into an equivalent system of equations of the forms \(x_i=1\), \(x_i+x_j=x_k\), \(x_i \cdot x_j=x_k\). Zbl 1285.11150
Tyszka, Apoloniusz; Molenda, Krzysztof; Sporysz, Maciej
1
2013
Some conjectures on addition and multiplication of complex (real) numbers. Zbl 1239.12002
Tyszka, Apoloniusz
1
2009
A discrete form of the Beckman-Quarles theorem for mappings from \(\mathbb{R}^2\,(\mathbb{C}^2)\) to \(\mathbb{F}^2\), where \(\mathbb{F}\) is a subfield of a commutative field extending \(\mathbb{R}\,(\mathbb{C})\). Zbl 1106.51007
Tyszka, Apoloniusz
1
2006
A discrete form of the Beckman-Quarles theorem for two-dimensional strictly convex normed spaces. Zbl 1034.46021
Tyszka, Apoloniusz
1
2002
On binary relations without non-identical endomorphisms. Zbl 1002.03040
Tyszka, Apoloniusz
1
2002
Discrete versions of the Beckman-Quarles theorem. Zbl 0948.51014
Tyszka, Apoloniusz
1
2000
On the notion of a geometric object in a Klein space. Zbl 0803.18006
Tyszka, Apoloniusz
1
1993
Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the modulus of integer solutions, if these solutions form a finite set? Zbl 1288.11116
Tyszka, Apoloniusz
2
2013
Conjecturally computable functions which unconditionally do not have any finite-fold Diophantine representation. Zbl 1285.11147
Tyszka, Apoloniusz
1
2013
A conjecture on integer arithmetic which implies that there is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, rational) solutions, if these solutions form a finite set. Zbl 1301.11080
Tyszka, Apoloniusz; Sporysz, Maciej; Peszek, Agnieszka
1
2013
An algorithm which transforms any Diophantine equation into an equivalent system of equations of the forms \(x_i=1\), \(x_i+x_j=x_k\), \(x_i \cdot x_j=x_k\). Zbl 1285.11150
Tyszka, Apoloniusz; Molenda, Krzysztof; Sporysz, Maciej
1
2013
Some conjectures on addition and multiplication of complex (real) numbers. Zbl 1239.12002
Tyszka, Apoloniusz
1
2009
A discrete form of the Beckman-Quarles theorem for mappings from \(\mathbb{R}^2\,(\mathbb{C}^2)\) to \(\mathbb{F}^2\), where \(\mathbb{F}\) is a subfield of a commutative field extending \(\mathbb{R}\,(\mathbb{C})\). Zbl 1106.51007
Tyszka, Apoloniusz
1
2006
Beckman-Quarles type theorems for mappings from \(\mathbb{R}^n\) to \(\mathbb{C}^n\). Zbl 1054.51011
Tyszka, Apoloniusz
2
2004
A discrete form of the Beckman-Quarles theorem for two-dimensional strictly convex normed spaces. Zbl 1034.46021
Tyszka, Apoloniusz
1
2002
On binary relations without non-identical endomorphisms. Zbl 1002.03040
Tyszka, Apoloniusz
1
2002
Discrete versions of the Beckman-Quarles theorem. Zbl 0948.51014
Tyszka, Apoloniusz
1
2000
On the notion of a geometric object in a Klein space. Zbl 0803.18006
Tyszka, Apoloniusz
1
1993

Citations by Year