Edit Profile Tyszka, Apoloniusz Compute Distance To: Compute Author ID: tyszka.apoloniusz Published as: Tyszka, A.; Tyszka, Apoloniusz Documents Indexed: 34 Publications since 1992 Reviewing Activity: 1 Review Co-Authors 32 single-authored 2 Sporysz, Maciej 1 Molenda, Krzysztof 1 Peszek, Agnieszka all top 5 Serials 7 Aequationes Mathematicae 6 Journal of Natural Geometry 4 International Mathematical Forum 2 Rocznik Naukowo-Dydaktyczny. Prace Matematyczne 1 American Mathematical Monthly 1 Information Processing Letters 1 Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1 Collectanea Mathematica 1 Demonstratio Mathematica 1 Journal of Geometry 1 Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica 1 Mathematical Logic Quarterly (MLQ) 1 Analele Ştiinţifice ale Universităţii “Ovidius” Constanţa. Seria: Matematică 1 Fundamenta Informaticae 1 Acta Mathematica Academiae Paedagogicae Nyíregyháziensis. New Series 1 Nonlinear Functional Analysis and Applications 1 Forum Geometricorum all top 5 Fields 15 Mathematical logic and foundations (03-XX) 14 Geometry (51-XX) 7 Number theory (11-XX) 6 Combinatorics (05-XX) 4 Field theory and polynomials (12-XX) 2 Algebraic geometry (14-XX) 2 Category theory; homological algebra (18-XX) 2 Difference and functional equations (39-XX) 2 Convex and discrete geometry (52-XX) 1 General algebraic systems (08-XX) 1 Linear and multilinear algebra; matrix theory (15-XX) 1 Group theory and generalizations (20-XX) 1 Real functions (26-XX) 1 Functional analysis (46-XX) 1 General topology (54-XX) Publications by Year all cited Publications top 5 cited Publications Citations contained in zbMATH 11 Publications have been cited 13 times in 8 Documents Cited by ▼ Year ▼ Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the modulus of integer solutions, if these solutions form a finite set? Zbl 1288.11116Tyszka, Apoloniusz 2 2013 Beckman-Quarles type theorems for mappings from \(\mathbb{R}^n\) to \(\mathbb{C}^n\). Zbl 1054.51011Tyszka, Apoloniusz 2 2004 Conjecturally computable functions which unconditionally do not have any finite-fold Diophantine representation. Zbl 1285.11147Tyszka, Apoloniusz 1 2013 A conjecture on integer arithmetic which implies that there is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, rational) solutions, if these solutions form a finite set. Zbl 1301.11080Tyszka, Apoloniusz; Sporysz, Maciej; Peszek, Agnieszka 1 2013 An algorithm which transforms any Diophantine equation into an equivalent system of equations of the forms \(x_i=1\), \(x_i+x_j=x_k\), \(x_i \cdot x_j=x_k\). Zbl 1285.11150Tyszka, Apoloniusz; Molenda, Krzysztof; Sporysz, Maciej 1 2013 Some conjectures on addition and multiplication of complex (real) numbers. Zbl 1239.12002Tyszka, Apoloniusz 1 2009 A discrete form of the Beckman-Quarles theorem for mappings from \(\mathbb{R}^2\,(\mathbb{C}^2)\) to \(\mathbb{F}^2\), where \(\mathbb{F}\) is a subfield of a commutative field extending \(\mathbb{R}\,(\mathbb{C})\). Zbl 1106.51007Tyszka, Apoloniusz 1 2006 A discrete form of the Beckman-Quarles theorem for two-dimensional strictly convex normed spaces. Zbl 1034.46021Tyszka, Apoloniusz 1 2002 On binary relations without non-identical endomorphisms. Zbl 1002.03040Tyszka, Apoloniusz 1 2002 Discrete versions of the Beckman-Quarles theorem. Zbl 0948.51014Tyszka, Apoloniusz 1 2000 On the notion of a geometric object in a Klein space. Zbl 0803.18006Tyszka, Apoloniusz 1 1993 Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the modulus of integer solutions, if these solutions form a finite set? Zbl 1288.11116Tyszka, Apoloniusz 2 2013 Conjecturally computable functions which unconditionally do not have any finite-fold Diophantine representation. Zbl 1285.11147Tyszka, Apoloniusz 1 2013 A conjecture on integer arithmetic which implies that there is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, rational) solutions, if these solutions form a finite set. Zbl 1301.11080Tyszka, Apoloniusz; Sporysz, Maciej; Peszek, Agnieszka 1 2013 An algorithm which transforms any Diophantine equation into an equivalent system of equations of the forms \(x_i=1\), \(x_i+x_j=x_k\), \(x_i \cdot x_j=x_k\). Zbl 1285.11150Tyszka, Apoloniusz; Molenda, Krzysztof; Sporysz, Maciej 1 2013 Some conjectures on addition and multiplication of complex (real) numbers. Zbl 1239.12002Tyszka, Apoloniusz 1 2009 A discrete form of the Beckman-Quarles theorem for mappings from \(\mathbb{R}^2\,(\mathbb{C}^2)\) to \(\mathbb{F}^2\), where \(\mathbb{F}\) is a subfield of a commutative field extending \(\mathbb{R}\,(\mathbb{C})\). Zbl 1106.51007Tyszka, Apoloniusz 1 2006 Beckman-Quarles type theorems for mappings from \(\mathbb{R}^n\) to \(\mathbb{C}^n\). Zbl 1054.51011Tyszka, Apoloniusz 2 2004 A discrete form of the Beckman-Quarles theorem for two-dimensional strictly convex normed spaces. Zbl 1034.46021Tyszka, Apoloniusz 1 2002 On binary relations without non-identical endomorphisms. Zbl 1002.03040Tyszka, Apoloniusz 1 2002 Discrete versions of the Beckman-Quarles theorem. Zbl 0948.51014Tyszka, Apoloniusz 1 2000 On the notion of a geometric object in a Klein space. Zbl 0803.18006Tyszka, Apoloniusz 1 1993 all cited Publications top 5 cited Publications Cited by 4 Authors 4 Tyszka, Apoloniusz 2 Gehér, György Pál 1 Kuzminykh, Alexandr V. 1 Moszner, Zenon all top 5 Cited in 6 Serials 2 Aequationes Mathematicae 1 Information Processing Letters 1 Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1 Journal of Geometry 1 Linear Algebra and its Applications 1 Mathematical Logic Quarterly (MLQ) all top 5 Cited in 9 Fields 3 Mathematical logic and foundations (03-XX) 3 Number theory (11-XX) 2 Functional analysis (46-XX) 2 Geometry (51-XX) 1 History and biography (01-XX) 1 Combinatorics (05-XX) 1 Linear and multilinear algebra; matrix theory (15-XX) 1 Difference and functional equations (39-XX) 1 Convex and discrete geometry (52-XX) Citations by Year