×

zbMATH — the first resource for mathematics

Takamura, Hiroyuki

Compute Distance To:
Author ID: takamura.hiroyuki Recent zbMATH articles by "Takamura, Hiroyuki"
Published as: Takamura, H.; Takamura, Hiroyuki
Documents Indexed: 38 Publications since 1992

Publications by Year

Citations contained in zbMATH

31 Publications have been cited 222 times in 98 Documents Cited by Year
Critical curve for \(p\)-\(q\) systems of nonlinear wave equations in three space dimensions. Zbl 0977.35077
Agemi, Rentaro; Kurokawa, Yuki; Takamura, Hiroyuki
26
2000
The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions. Zbl 1230.35069
Takamura, Hiroyuki; Wakasa, Kyouhei
25
2011
Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. Zbl 1411.35206
Lai, Ning-An; Takamura, Hiroyuki; Wakasa, Kyouhei
23
2017
Improved Kato’s lemma on ordinary differential inequality and its application to semilinear wave equations. Zbl 1329.35211
Takamura, Hiroyuki
16
2015
Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case. Zbl 1395.35045
Lai, Ning-An; Takamura, Hiroyuki
15
2018
The lifespan of solutions to nonlinear systems of a high-dimensional wave equation. Zbl 1094.35075
Georgiev, Vladimir; Takamura, Hiroyuki; Yi, Zhou
15
2006
An elementary proof of the exponential blow-up for semi-linear wave equations. Zbl 0802.35098
Takamura, Hiroyuki
11
1994
Blow-up for semilinear wave equations with slowly decaying data in high dimensions. Zbl 0848.35017
Takamura, Hiroyuki
10
1995
The lifespan of classical solutions to nonlinear wave equations in two space dimensions. Zbl 0782.35040
Agemi, Rentaro; Takamura, Hiroyuki
10
1992
A weighted pointwise estimate for two dimensional wave equations and its application to nonlinear systems. Zbl 1149.35384
Kurokawa, Yuki; Takamura, Hiroyuki
9
2003
Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey’s conjecture. Zbl 1424.35254
Lai, Ning-An; Takamura, Hiroyuki
7
2019
The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions. Zbl 1265.35208
Kurokawa, Y.; Takamura, H.; Wakasa, K.
7
2012
Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Zbl 1437.35462
Palmieri, Alessandro; Takamura, Hiroyuki
5
2019
Almost global solutions of semilinear wave equations with the critical exponent in high dimensions. Zbl 1297.35140
Takamura, Hiroyuki; Wakasa, Kyouhei
5
2014
The sharp lower bound of the lifespan of solutions to semilinear wave equations with low powers in two space dimensions. Zbl 1441.35171
Imai, Takuto; Kato, Masakazu; Takamura, Hiroyuki; Wakasa, Kyouhei
4
2019
Nonexistence of global solutions of wave equations with weak time-dependent damping and combined nonlinearity. Zbl 1415.35203
Lai, Ning-An; Takamura, Hiroyuki
4
2019
Remarks on the blow-up boundaries and rates for nonlinear wave equations. Zbl 0932.35150
Ohta, Masahito; Takamura, Hiroyuki
4
1998
Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations of derivative type in the scattering case. Zbl 1439.35338
Palmieri, Alessandro; Takamura, Hiroyuki
3
2020
Blow-up theorem for semilinear wave equations with non-zero initial position. Zbl 1204.35056
Takamura, Hiroyuki; Uesaka, Hiroshi; Wakasa, Kyouhei
3
2010
Blow-up for semilinear wave equations in four or five space dimensions. Zbl 0814.35078
Takamura, Hiroyuki
3
1995
On certain integral equations related to nonlinear wave equations. Zbl 0804.45001
Agemi, Rentaro; Kubota, Kôji; Takamura, Hiroyuki
3
1994
Global existence for nonlinear wave equations with small data of noncompact support in three space dimensions. Zbl 0757.35046
Takamura, Hiroyuki
3
1992
The lifespan of solutions of semilinear wave equations with the scale-invariant damping in one space dimension. Zbl 07144908
Kato, Masakazu; Takamura, Hiroyuki; Wakasa, Kyouhei
2
2019
Blow up for semilinear wave equations with a data of the critical decay having a small loss. Zbl 1069.35046
Kurokawa, Yuki; Takamura, Hiroyuki
2
2003
The lifespan of solutions of semilinear wave equations with the scale-invariant damping in two space dimensions. Zbl 1442.35262
Imai, Takuto; Kato, Masakazu; Takamura, Hiroyuki; Wakasa, Kyouhei
1
2020
Wave-like blow-up for semilinear wave equations with scattering damping and negative mass term. Zbl 1428.35227
Lai, Ning-An; Schiavone, Nico Michele; Takamura, Hiroyuki
1
2019
Global existence for semilinear wave equations with the critical blow-up term in high dimensions. Zbl 1338.35300
Takamura, Hiroyuki; Wakasa, Kyouhei
1
2016
Blow-up of positive solutions to wave equations in high space dimensions. Zbl 1363.35251
Rammaha, Mohammad; Takamura, Hiroyuki; Uesaka, Hiroshi; Wakasa, Kyouhei
1
2016
Nonexistence of global solutions to semilinear wave equations. Zbl 0973.35137
Takamura, Hiroyuki
1
1997
Nonexistence of global solutions to semilinear wave equations. Zbl 0888.35071
Takamura, Hiroyuki
1
1997
Blow-up for nonlinear wave equations with slowly decaying data. Zbl 0814.35077
Takamura, Hiroyuki
1
1994
Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations of derivative type in the scattering case. Zbl 1439.35338
Palmieri, Alessandro; Takamura, Hiroyuki
3
2020
The lifespan of solutions of semilinear wave equations with the scale-invariant damping in two space dimensions. Zbl 1442.35262
Imai, Takuto; Kato, Masakazu; Takamura, Hiroyuki; Wakasa, Kyouhei
1
2020
Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey’s conjecture. Zbl 1424.35254
Lai, Ning-An; Takamura, Hiroyuki
7
2019
Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Zbl 1437.35462
Palmieri, Alessandro; Takamura, Hiroyuki
5
2019
The sharp lower bound of the lifespan of solutions to semilinear wave equations with low powers in two space dimensions. Zbl 1441.35171
Imai, Takuto; Kato, Masakazu; Takamura, Hiroyuki; Wakasa, Kyouhei
4
2019
Nonexistence of global solutions of wave equations with weak time-dependent damping and combined nonlinearity. Zbl 1415.35203
Lai, Ning-An; Takamura, Hiroyuki
4
2019
The lifespan of solutions of semilinear wave equations with the scale-invariant damping in one space dimension. Zbl 07144908
Kato, Masakazu; Takamura, Hiroyuki; Wakasa, Kyouhei
2
2019
Wave-like blow-up for semilinear wave equations with scattering damping and negative mass term. Zbl 1428.35227
Lai, Ning-An; Schiavone, Nico Michele; Takamura, Hiroyuki
1
2019
Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case. Zbl 1395.35045
Lai, Ning-An; Takamura, Hiroyuki
15
2018
Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. Zbl 1411.35206
Lai, Ning-An; Takamura, Hiroyuki; Wakasa, Kyouhei
23
2017
Global existence for semilinear wave equations with the critical blow-up term in high dimensions. Zbl 1338.35300
Takamura, Hiroyuki; Wakasa, Kyouhei
1
2016
Blow-up of positive solutions to wave equations in high space dimensions. Zbl 1363.35251
Rammaha, Mohammad; Takamura, Hiroyuki; Uesaka, Hiroshi; Wakasa, Kyouhei
1
2016
Improved Kato’s lemma on ordinary differential inequality and its application to semilinear wave equations. Zbl 1329.35211
Takamura, Hiroyuki
16
2015
Almost global solutions of semilinear wave equations with the critical exponent in high dimensions. Zbl 1297.35140
Takamura, Hiroyuki; Wakasa, Kyouhei
5
2014
The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions. Zbl 1265.35208
Kurokawa, Y.; Takamura, H.; Wakasa, K.
7
2012
The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions. Zbl 1230.35069
Takamura, Hiroyuki; Wakasa, Kyouhei
25
2011
Blow-up theorem for semilinear wave equations with non-zero initial position. Zbl 1204.35056
Takamura, Hiroyuki; Uesaka, Hiroshi; Wakasa, Kyouhei
3
2010
The lifespan of solutions to nonlinear systems of a high-dimensional wave equation. Zbl 1094.35075
Georgiev, Vladimir; Takamura, Hiroyuki; Yi, Zhou
15
2006
A weighted pointwise estimate for two dimensional wave equations and its application to nonlinear systems. Zbl 1149.35384
Kurokawa, Yuki; Takamura, Hiroyuki
9
2003
Blow up for semilinear wave equations with a data of the critical decay having a small loss. Zbl 1069.35046
Kurokawa, Yuki; Takamura, Hiroyuki
2
2003
Critical curve for \(p\)-\(q\) systems of nonlinear wave equations in three space dimensions. Zbl 0977.35077
Agemi, Rentaro; Kurokawa, Yuki; Takamura, Hiroyuki
26
2000
Remarks on the blow-up boundaries and rates for nonlinear wave equations. Zbl 0932.35150
Ohta, Masahito; Takamura, Hiroyuki
4
1998
Nonexistence of global solutions to semilinear wave equations. Zbl 0973.35137
Takamura, Hiroyuki
1
1997
Nonexistence of global solutions to semilinear wave equations. Zbl 0888.35071
Takamura, Hiroyuki
1
1997
Blow-up for semilinear wave equations with slowly decaying data in high dimensions. Zbl 0848.35017
Takamura, Hiroyuki
10
1995
Blow-up for semilinear wave equations in four or five space dimensions. Zbl 0814.35078
Takamura, Hiroyuki
3
1995
An elementary proof of the exponential blow-up for semi-linear wave equations. Zbl 0802.35098
Takamura, Hiroyuki
11
1994
On certain integral equations related to nonlinear wave equations. Zbl 0804.45001
Agemi, Rentaro; Kubota, Kôji; Takamura, Hiroyuki
3
1994
Blow-up for nonlinear wave equations with slowly decaying data. Zbl 0814.35077
Takamura, Hiroyuki
1
1994
The lifespan of classical solutions to nonlinear wave equations in two space dimensions. Zbl 0782.35040
Agemi, Rentaro; Takamura, Hiroyuki
10
1992
Global existence for nonlinear wave equations with small data of noncompact support in three space dimensions. Zbl 0757.35046
Takamura, Hiroyuki
3
1992

Citations by Year