×
Compute Distance To:
Author ID: smirnov.yury-g Recent zbMATH articles by "Smirnov, Yury G."
Published as: Smirnov, Yu. G.; Smirnov, Yury; Smirnov, Yury G.; Smirnov, Yu.; Smirnov, Yuri G.; Smirnov, Y. G.; Smirnov, Youri; Smirnov, Yu G.; Smirnov, Y.
Homepage: https://izvuz_fmn_eng.pnzgu.ru/Smirnov
External Links: ORCID

Publications by Year

Citations contained in zbMATH Open

71 Publications have been cited 320 times in 116 Documents Cited by Year
On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell’s equations with cubic nonlinearity. Zbl 1353.78020
Smirnov, Yu. G.; Valovik, D. V.
16
2016
Discreteness of the spectrum in the problem on normal waves in an open inhomogeneous waveguide. Zbl 1384.78008
Smirnov, Yu. G.; Smolkin, E. Yu.
15
2017
Investigation of the spectrum of the problem of normal waves in a closed regular inhomogeneous dielectric waveguide of arbitrary cross section. Zbl 1397.78043
Smirnov, Yu. G.; Smolkin, E. Yu.
15
2018
Integral equation approach for the propagation of TE-waves in a nonlinear dielectric cylindrical waveguide. Zbl 1067.35122
Smirnov, Y.; Schürmann, H. W.; Shestopalov, Y.
14
2004
Coupled electromagnetic transverse-electric-transverse magnetic wave propagation in a cylindrical waveguide with Kerr nonlinearity. Zbl 1282.78026
Smirnov, Yury G.; Valovik, Dmitry V.
13
2013
Problem of nonlinear coupled electromagnetic TE-TE wave propagation. Zbl 1296.78006
Smirnov, Yury G.; Valovik, Dmitry V.
11
2013
Eigenwaves in waveguides with dielectric inclusions: spectrum. Zbl 1294.78013
Shestopalov, Yury; Smirnov, Yury
11
2014
Nonlinear effects of electromagnetic TM wave propagation in anisotropic layer with Kerr nonlinearity. Zbl 1251.78011
Smirnov, Yu G.; Valovik, D. V.
11
2012
Coupled electromagnetic TE-TM wave propagation in a layer with Kerr nonlinearity. Zbl 1278.78004
Smirnov, Yury G.; Valovik, Dmitry V.
10
2012
Eigenwaves in waveguides with dielectric inclusions: completeness. Zbl 1301.78006
Shestopalov, Yury; Smirnov, Yury
10
2014
Minimal conformal extensions of the Higgs sector. Zbl 1380.81235
Helmboldt, Alexander J.; Humbert, Pascal; Lindner, Manfred; Smirnov, Juri
8
2017
Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides. Zbl 1322.78013
Smirnov, Yu. G.
8
2015
The propagation of electromagnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium. Zbl 1114.78002
Kupriyanova, S. N.; Smirnov, Yu. G.
8
2004
Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies. Zbl 1313.78028
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
7
2014
Pseudodifferential operator method in a problem on the diffraction of an electromagnetic wave on a dielectric body. Zbl 1252.35288
Valovik, D. V.; Smirnov, Yu. G.
7
2012
Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization. Zbl 1416.78015
Smirnov, Yu. G.; Smolkin, E. Yu.; Snegur, M. O.
7
2018
Operator function method in the problem of normal waves in an inhomogeneous waveguide. Zbl 1414.78010
Smirnov, Yu. G.; Smol’kin, E. Yu.
7
2018
Determination of permittivity of an inhomogeneous dielectric body in a waveguide. Zbl 1227.78014
Shestopalov, Yury; Smirnov, Yury
6
2011
Convergence of the Galerkin methods for equations with elliptic operators on subspaces and solving the electric field equation. Zbl 1210.49030
Smirnov, Yu. G.
6
2007
Inverse problem of determining parameters of inhomogeneity of a body from acoustic field measurements. Zbl 1382.76220
Evstigneev, Roman O.; Medvedik, M. Yu.; Smirnov, Yu. G.
6
2016
Integrodifferential equations of the vector problem of electromagnetic wave diffraction by a system of nonintersecting screens and inhomogeneous bodies. Zbl 1342.35371
Smirnov, Y. G.; Tsupak, A. A.
6
2015
Two-step method for solving inverse problem of diffraction by an inhomogenous body. Zbl 1402.78013
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
6
2018
Nonlinear double-layer Bragg waveguide: analytical and numerical approaches to investigate waveguiding problem. Zbl 1295.78014
Smirnov, Yury G.; Smol’kin, Eugenii Yu.; Valovik, Dmitry V.
6
2014
Operator-bundle method for conjugation boundary-value problems for a system of elliptic equations. Zbl 0768.35022
Smirnov, Yu. G.
5
1991
On the existence of infinitely many eigenvalues in a nonlinear Sturm-Liouville problem arising in the theory of waveguides. Zbl 1384.78007
Kurseeva, V. Yu.; Smirnov, Yu. G.
5
2017
Dark matter as a weakly coupled dark baryon. Zbl 1383.83237
Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro
5
2017
On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation. Zbl 1364.35353
Smirnov, Yu. G.
5
2016
Method of integral equations in the scalar problem of diffraction on a system consisting of a “soft” and a “hard” screen and an inhomogeneous body. Zbl 1312.65203
Smirnov, Yu. G.; Tsupak, A. A.
4
2014
Investigation of electromagnetic diffraction by a dielectric body in a waveguide using the method of volume singular integral equation. Zbl 1221.78027
Kobayashi, K.; Shestopalov, Yu.; Smirnov, Yu.
4
2009
Existence and uniqueness of a solution to the inverse problem of the complex permittivity reconstruction of a dielectric body in a waveguide. Zbl 1426.78025
Shestopalov, Yury; Smirnov, Yury
4
2010
Boundary eigenvalue problem for Maxwell equations in a nonlinear dielectric layer. Zbl 1213.35217
Smirnov, Yury G.; Valovik, Dmitry V.
4
2010
The new type of non-polarized symmetric electromagnetic waves in planar nonlinear waveguide. Zbl 07024352
Smirnov, Yury; Smolkin, Eugene; Kurseeva, Valery
4
2019
On the existence of non-polarized azimuthal-symmetric electromagnetic waves in circular dielectric waveguide filled with nonlinear isotropic homogeneous medium. Zbl 07213352
Smirnov, Yury; Smolkin, Eugene
4
2018
The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape. Zbl 0831.45009
Smirnov, Yu. G.
3
1994
Investigation of electromagnetic wave diffraction from an inhomogeneous partially shielded solid. Zbl 1394.35490
Smirnov, Yury; Tsupak, Aleksey A.
3
2018
Eigenwaves in a lossy metal-dielectric waveguide. Zbl 1433.78032
Smirnov, Yury; Smolkin, Eugene
3
2020
On the volume singular integro-differential equation approach for the electromagnetic diffraction problem. Zbl 1360.35267
Smirnov, Yu. G.; Tsupak, A. A.; Valovik, D. V.
3
2017
Long range effects in gravity theories with Vainshtein screening. Zbl 07462645
Platscher, Moritz; Smirnov, Juri; Meyer, Sven; Bartelmann, Matthias
3
2018
Degravitation of the cosmological constant in bigravity. Zbl 07466014
Platscher, Moritz; Smirnov, Juri
3
2017
Method of integral equations in a scalar diffraction problem on a partially screened inhomogeneous body. Zbl 1331.65166
Smirnov, Yu. G.; Tsupak, A. A.
2
2015
A nonlinear boundary eigenvalue problem for TM-polarized electromagnetic waves in a nonlinear layer. Zbl 1177.78050
Valovik, D. V.; Smirnov, Yu. G.
2
2008
On the Fredholm property of a system of pseudodifferential equations in a diffraction problem on a bounded screen. Zbl 0769.35077
Smirnov, Yu. G.
2
1992
Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides. Zbl 1299.78015
Valovik, D. V.; Smirnov, Yu. G.; Smol’kin, E. Yu.
2
2013
On the problem of electromagnetic waves propagating along a nonlinear inhomogeneous cylindrical waveguide. Zbl 1273.78010
Smirnov, Yury G.; Valovik, Dmitry V.
2
2013
On the uniqueness of a solution to an inverse problem of scattering by an inhomogeneous solid with a piecewise Hölder refractive index in a special function class. Zbl 1420.35473
Smirnov, Yu. G.; Tsupak, A. A.
2
2019
On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body. Zbl 1379.78010
Smirnov, Yu. G.; Tsupak, A. A.
2
2017
Problem of coupled electromagnetic TE-TE wave propagation in a layer filled with nonlinear medium with saturation. Zbl 1429.35183
Kurseeva, V. Yu.; Smirnov, Yu. G.
2
2019
Nonlinear coupled wave propagation in a \(n\)-dimensional layer. Zbl 1411.78006
Smirnov, Yury G.; Valovik, Dmitry V.
2
2017
A nonlinear multiparameter EV problem. Zbl 1402.78015
Angermann, Lutz; Shestopalov, Yu. V.; Smirnov, Yu. G.; Yatsyk, Vasyl V.
2
2018
Two-step method for permittivity determination of an inhomogeneous body placed in a rectangular waveguide. Zbl 1406.78015
Smirnov, Yu. G.; Medvedik, M. Yu.; Moskaleva, M. A.
2
2018
Investigation of an electromagnetic problem of diffraction by a dielectric body using the method of a volume singular integral equation. Zbl 1114.78005
Smirnov, Yu. G.; Tsupak, A. A.
2
2004
Fredholmness of systems of pseudodifferential equations in the problem of diffraction on a bounded screen. Zbl 0788.35157
Smirnov, Yu. G.
1
1992
The electric field integral equation: theory and algorithms. Zbl 0926.65123
Ivakhnenko, V. I.; Smirnov, Yu. G.; Tyrtyshnikov, E. E.
1
1998
Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao-Wilton-Glisson method. Zbl 1313.78006
Medvedik, M. Yu.; Smirnov, Yu. G.
1
2014
On the problem of propagation of nonlinear coupled TE-TM waves in a layer. Zbl 1313.35338
Valovik, D. V.; Smirnov, Yu. G.
1
2014
Existence and uniqueness of a solution of a singular volume integral equation in a diffraction problem. Zbl 1130.45002
Smirnov, Yu. G.; Tsupak, A. A.
1
2005
Complex waves in dielectric layer. Zbl 1450.35247
Smirnov, Yu.; Smolkin, E.
1
2020
On the existence of the nonlinear leaky TE-polarized waves in a metal-dielectric cylindrical waveguide. Zbl 07222224
Shestopalov, Yury; Smolkin, Eugene; Smirnov, Yury
1
2019
Existence of an infinite spectrum of damped leaky TE waves in an open inhomogeneous cylindrical metal-dielectric waveguide. Zbl 1427.78012
Smirnov, Yu. G.; Smol’kin, E. Yu.
1
2019
Mathematical theory of normal waves in radially inhomogenous dielectric rod. Zbl 1428.78022
Smirnov, Yury; Smolkin, Eugene
1
2019
Synthesis problem and mathematical modeling of multilayered absorbing coating. Zbl 1402.78018
Derevyanchuk, E. D.; Shutkov, A. S.; Smirnov, Yu. G.
1
2018
Diffraction of TE polarized electromagnetic waves by a layer with a nonlinear medium. Zbl 1402.78009
Smirnov, Yu. G.; Smolkin, E.; Kurseeva, V.
1
2018
On the Fredholm property of the electric field equation in the vector diffraction problem for a partially screened solid. Zbl 1366.78016
Smirnov, Yu. G.; Tsupak, A. A.
1
2016
Integral dispersion equation method for nonlinear eigenvalue problems. Zbl 1452.78025
Smirnov, Yu. G.
1
2020
Existence and uniqueness theorems in electromagnetic diffraction on systems of lossless dielectrics and perfectly conducting screens. Zbl 1367.31008
Smirnov, Yu. G.; Tsupak, A. A.
1
2017
Solution to the inverse problem of reconstructing permittivity of an \(n\)-sectional diaphragm in a rectangular waveguide. Zbl 1321.78009
Smirnov, Yuri G.; Shestopalov, Yuri V.; Derevyanchuk, Ekaterina D.
1
2014
Strong ellipticity of the hybrid formulation of the electromagnetic diffraction problem. Zbl 0984.78008
Slavin, I. V.; Smirnov, Yu. G.
1
2000
On the solvability of vector problems of diffraction in domains connected through an opening in a screen. Zbl 0820.35156
Smirnov, Yu. G.
1
1993
The two-step method for determining a piecewise-continuous refractive index of a 2D scatterer by near field measurements. Zbl 1461.65213
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
1
2020
Non-iterative two-step method for solving scalar inverse 3D diffraction problem. Zbl 1461.65282
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
1
2020
Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies. Zbl 07424696
Samokhin, A. B.; Smirnov, Yu. G.
1
2021
Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies. Zbl 07424696
Samokhin, A. B.; Smirnov, Yu. G.
1
2021
Eigenwaves in a lossy metal-dielectric waveguide. Zbl 1433.78032
Smirnov, Yury; Smolkin, Eugene
3
2020
Complex waves in dielectric layer. Zbl 1450.35247
Smirnov, Yu.; Smolkin, E.
1
2020
Integral dispersion equation method for nonlinear eigenvalue problems. Zbl 1452.78025
Smirnov, Yu. G.
1
2020
The two-step method for determining a piecewise-continuous refractive index of a 2D scatterer by near field measurements. Zbl 1461.65213
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
1
2020
Non-iterative two-step method for solving scalar inverse 3D diffraction problem. Zbl 1461.65282
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
1
2020
The new type of non-polarized symmetric electromagnetic waves in planar nonlinear waveguide. Zbl 07024352
Smirnov, Yury; Smolkin, Eugene; Kurseeva, Valery
4
2019
On the uniqueness of a solution to an inverse problem of scattering by an inhomogeneous solid with a piecewise Hölder refractive index in a special function class. Zbl 1420.35473
Smirnov, Yu. G.; Tsupak, A. A.
2
2019
Problem of coupled electromagnetic TE-TE wave propagation in a layer filled with nonlinear medium with saturation. Zbl 1429.35183
Kurseeva, V. Yu.; Smirnov, Yu. G.
2
2019
On the existence of the nonlinear leaky TE-polarized waves in a metal-dielectric cylindrical waveguide. Zbl 07222224
Shestopalov, Yury; Smolkin, Eugene; Smirnov, Yury
1
2019
Existence of an infinite spectrum of damped leaky TE waves in an open inhomogeneous cylindrical metal-dielectric waveguide. Zbl 1427.78012
Smirnov, Yu. G.; Smol’kin, E. Yu.
1
2019
Mathematical theory of normal waves in radially inhomogenous dielectric rod. Zbl 1428.78022
Smirnov, Yury; Smolkin, Eugene
1
2019
Investigation of the spectrum of the problem of normal waves in a closed regular inhomogeneous dielectric waveguide of arbitrary cross section. Zbl 1397.78043
Smirnov, Yu. G.; Smolkin, E. Yu.
15
2018
Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization. Zbl 1416.78015
Smirnov, Yu. G.; Smolkin, E. Yu.; Snegur, M. O.
7
2018
Operator function method in the problem of normal waves in an inhomogeneous waveguide. Zbl 1414.78010
Smirnov, Yu. G.; Smol’kin, E. Yu.
7
2018
Two-step method for solving inverse problem of diffraction by an inhomogenous body. Zbl 1402.78013
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
6
2018
On the existence of non-polarized azimuthal-symmetric electromagnetic waves in circular dielectric waveguide filled with nonlinear isotropic homogeneous medium. Zbl 07213352
Smirnov, Yury; Smolkin, Eugene
4
2018
Investigation of electromagnetic wave diffraction from an inhomogeneous partially shielded solid. Zbl 1394.35490
Smirnov, Yury; Tsupak, Aleksey A.
3
2018
Long range effects in gravity theories with Vainshtein screening. Zbl 07462645
Platscher, Moritz; Smirnov, Juri; Meyer, Sven; Bartelmann, Matthias
3
2018
A nonlinear multiparameter EV problem. Zbl 1402.78015
Angermann, Lutz; Shestopalov, Yu. V.; Smirnov, Yu. G.; Yatsyk, Vasyl V.
2
2018
Two-step method for permittivity determination of an inhomogeneous body placed in a rectangular waveguide. Zbl 1406.78015
Smirnov, Yu. G.; Medvedik, M. Yu.; Moskaleva, M. A.
2
2018
Synthesis problem and mathematical modeling of multilayered absorbing coating. Zbl 1402.78018
Derevyanchuk, E. D.; Shutkov, A. S.; Smirnov, Yu. G.
1
2018
Diffraction of TE polarized electromagnetic waves by a layer with a nonlinear medium. Zbl 1402.78009
Smirnov, Yu. G.; Smolkin, E.; Kurseeva, V.
1
2018
Discreteness of the spectrum in the problem on normal waves in an open inhomogeneous waveguide. Zbl 1384.78008
Smirnov, Yu. G.; Smolkin, E. Yu.
15
2017
Minimal conformal extensions of the Higgs sector. Zbl 1380.81235
Helmboldt, Alexander J.; Humbert, Pascal; Lindner, Manfred; Smirnov, Juri
8
2017
On the existence of infinitely many eigenvalues in a nonlinear Sturm-Liouville problem arising in the theory of waveguides. Zbl 1384.78007
Kurseeva, V. Yu.; Smirnov, Yu. G.
5
2017
Dark matter as a weakly coupled dark baryon. Zbl 1383.83237
Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro
5
2017
On the volume singular integro-differential equation approach for the electromagnetic diffraction problem. Zbl 1360.35267
Smirnov, Yu. G.; Tsupak, A. A.; Valovik, D. V.
3
2017
Degravitation of the cosmological constant in bigravity. Zbl 07466014
Platscher, Moritz; Smirnov, Juri
3
2017
On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body. Zbl 1379.78010
Smirnov, Yu. G.; Tsupak, A. A.
2
2017
Nonlinear coupled wave propagation in a \(n\)-dimensional layer. Zbl 1411.78006
Smirnov, Yury G.; Valovik, Dmitry V.
2
2017
Existence and uniqueness theorems in electromagnetic diffraction on systems of lossless dielectrics and perfectly conducting screens. Zbl 1367.31008
Smirnov, Yu. G.; Tsupak, A. A.
1
2017
On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell’s equations with cubic nonlinearity. Zbl 1353.78020
Smirnov, Yu. G.; Valovik, D. V.
16
2016
Inverse problem of determining parameters of inhomogeneity of a body from acoustic field measurements. Zbl 1382.76220
Evstigneev, Roman O.; Medvedik, M. Yu.; Smirnov, Yu. G.
6
2016
On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation. Zbl 1364.35353
Smirnov, Yu. G.
5
2016
On the Fredholm property of the electric field equation in the vector diffraction problem for a partially screened solid. Zbl 1366.78016
Smirnov, Yu. G.; Tsupak, A. A.
1
2016
Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides. Zbl 1322.78013
Smirnov, Yu. G.
8
2015
Integrodifferential equations of the vector problem of electromagnetic wave diffraction by a system of nonintersecting screens and inhomogeneous bodies. Zbl 1342.35371
Smirnov, Y. G.; Tsupak, A. A.
6
2015
Method of integral equations in a scalar diffraction problem on a partially screened inhomogeneous body. Zbl 1331.65166
Smirnov, Yu. G.; Tsupak, A. A.
2
2015
Eigenwaves in waveguides with dielectric inclusions: spectrum. Zbl 1294.78013
Shestopalov, Yury; Smirnov, Yury
11
2014
Eigenwaves in waveguides with dielectric inclusions: completeness. Zbl 1301.78006
Shestopalov, Yury; Smirnov, Yury
10
2014
Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies. Zbl 1313.78028
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
7
2014
Nonlinear double-layer Bragg waveguide: analytical and numerical approaches to investigate waveguiding problem. Zbl 1295.78014
Smirnov, Yury G.; Smol’kin, Eugenii Yu.; Valovik, Dmitry V.
6
2014
Method of integral equations in the scalar problem of diffraction on a system consisting of a “soft” and a “hard” screen and an inhomogeneous body. Zbl 1312.65203
Smirnov, Yu. G.; Tsupak, A. A.
4
2014
Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao-Wilton-Glisson method. Zbl 1313.78006
Medvedik, M. Yu.; Smirnov, Yu. G.
1
2014
On the problem of propagation of nonlinear coupled TE-TM waves in a layer. Zbl 1313.35338
Valovik, D. V.; Smirnov, Yu. G.
1
2014
Solution to the inverse problem of reconstructing permittivity of an \(n\)-sectional diaphragm in a rectangular waveguide. Zbl 1321.78009
Smirnov, Yuri G.; Shestopalov, Yuri V.; Derevyanchuk, Ekaterina D.
1
2014
Coupled electromagnetic transverse-electric-transverse magnetic wave propagation in a cylindrical waveguide with Kerr nonlinearity. Zbl 1282.78026
Smirnov, Yury G.; Valovik, Dmitry V.
13
2013
Problem of nonlinear coupled electromagnetic TE-TE wave propagation. Zbl 1296.78006
Smirnov, Yury G.; Valovik, Dmitry V.
11
2013
Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides. Zbl 1299.78015
Valovik, D. V.; Smirnov, Yu. G.; Smol’kin, E. Yu.
2
2013
On the problem of electromagnetic waves propagating along a nonlinear inhomogeneous cylindrical waveguide. Zbl 1273.78010
Smirnov, Yury G.; Valovik, Dmitry V.
2
2013
Nonlinear effects of electromagnetic TM wave propagation in anisotropic layer with Kerr nonlinearity. Zbl 1251.78011
Smirnov, Yu G.; Valovik, D. V.
11
2012
Coupled electromagnetic TE-TM wave propagation in a layer with Kerr nonlinearity. Zbl 1278.78004
Smirnov, Yury G.; Valovik, Dmitry V.
10
2012
Pseudodifferential operator method in a problem on the diffraction of an electromagnetic wave on a dielectric body. Zbl 1252.35288
Valovik, D. V.; Smirnov, Yu. G.
7
2012
Determination of permittivity of an inhomogeneous dielectric body in a waveguide. Zbl 1227.78014
Shestopalov, Yury; Smirnov, Yury
6
2011
Existence and uniqueness of a solution to the inverse problem of the complex permittivity reconstruction of a dielectric body in a waveguide. Zbl 1426.78025
Shestopalov, Yury; Smirnov, Yury
4
2010
Boundary eigenvalue problem for Maxwell equations in a nonlinear dielectric layer. Zbl 1213.35217
Smirnov, Yury G.; Valovik, Dmitry V.
4
2010
Investigation of electromagnetic diffraction by a dielectric body in a waveguide using the method of volume singular integral equation. Zbl 1221.78027
Kobayashi, K.; Shestopalov, Yu.; Smirnov, Yu.
4
2009
A nonlinear boundary eigenvalue problem for TM-polarized electromagnetic waves in a nonlinear layer. Zbl 1177.78050
Valovik, D. V.; Smirnov, Yu. G.
2
2008
Convergence of the Galerkin methods for equations with elliptic operators on subspaces and solving the electric field equation. Zbl 1210.49030
Smirnov, Yu. G.
6
2007
Existence and uniqueness of a solution of a singular volume integral equation in a diffraction problem. Zbl 1130.45002
Smirnov, Yu. G.; Tsupak, A. A.
1
2005
Integral equation approach for the propagation of TE-waves in a nonlinear dielectric cylindrical waveguide. Zbl 1067.35122
Smirnov, Y.; Schürmann, H. W.; Shestopalov, Y.
14
2004
The propagation of electromagnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium. Zbl 1114.78002
Kupriyanova, S. N.; Smirnov, Yu. G.
8
2004
Investigation of an electromagnetic problem of diffraction by a dielectric body using the method of a volume singular integral equation. Zbl 1114.78005
Smirnov, Yu. G.; Tsupak, A. A.
2
2004
Strong ellipticity of the hybrid formulation of the electromagnetic diffraction problem. Zbl 0984.78008
Slavin, I. V.; Smirnov, Yu. G.
1
2000
The electric field integral equation: theory and algorithms. Zbl 0926.65123
Ivakhnenko, V. I.; Smirnov, Yu. G.; Tyrtyshnikov, E. E.
1
1998
The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape. Zbl 0831.45009
Smirnov, Yu. G.
3
1994
On the solvability of vector problems of diffraction in domains connected through an opening in a screen. Zbl 0820.35156
Smirnov, Yu. G.
1
1993
On the Fredholm property of a system of pseudodifferential equations in a diffraction problem on a bounded screen. Zbl 0769.35077
Smirnov, Yu. G.
2
1992
Fredholmness of systems of pseudodifferential equations in the problem of diffraction on a bounded screen. Zbl 0788.35157
Smirnov, Yu. G.
1
1992
Operator-bundle method for conjugation boundary-value problems for a system of elliptic equations. Zbl 0768.35022
Smirnov, Yu. G.
5
1991

Citations by Year