×

zbMATH — the first resource for mathematics

Pulita, Andrea

Compute Distance To:
Author ID: pulita.andrea Recent zbMATH articles by "Pulita, Andrea"
Published as: Pulita, Andrea
External Links: MGP · Wikidata
Documents Indexed: 11 Publications since 2005

Co-Authors

8 single-authored
2 Poineau, Jérôme
1 Chiarellotto, Bruno

Publications by Year

Citations contained in zbMATH

8 Publications have been cited 37 times in 20 Documents Cited by Year
Rank one solvable \(p\)-adic differential equations and finite Abelian characters via Lubin-Tate groups. Zbl 1125.12001
Pulita, Andrea
8
2007
The convergence Newton polygon of a \(p\)-adic differential equation. II: Continuity and finiteness on Berkovich curves. Zbl 1332.12012
Poineau, Jérôme; Pulita, Andrea
7
2015
Continuity and finiteness of the radius of convergence of a \(p\)-adic differential equation via potential theory. Zbl 1353.12001
Poineau, Jérôme; Pulita, Andrea
5
2015
The convergence Newton polygon of a \(p\)-adic differential equation. I: Affinoid domains of the Berkovich affine line. Zbl 1332.12013
Pulita, Andrea
5
2015
Arithmetic and differential Swan conductors of rank one representations with finite local monodromy. Zbl 1198.12004
Chiarellotto, Bruno; Pulita, Andrea
5
2009
\(p\)-adic confluence of \(q\)-difference equations. Zbl 1149.12002
Pulita, Andrea
4
2008
Infinitesimal deformation of \(p\)-adic differential equations on Berkovich curves. Zbl 1403.12003
Pulita, Andrea
2
2017
Frobenius structure for rank one \(p\)-adic differential equations. Zbl 1179.12001
Pulita, Andrea
1
2005
Infinitesimal deformation of \(p\)-adic differential equations on Berkovich curves. Zbl 1403.12003
Pulita, Andrea
2
2017
The convergence Newton polygon of a \(p\)-adic differential equation. II: Continuity and finiteness on Berkovich curves. Zbl 1332.12012
Poineau, Jérôme; Pulita, Andrea
7
2015
Continuity and finiteness of the radius of convergence of a \(p\)-adic differential equation via potential theory. Zbl 1353.12001
Poineau, Jérôme; Pulita, Andrea
5
2015
The convergence Newton polygon of a \(p\)-adic differential equation. I: Affinoid domains of the Berkovich affine line. Zbl 1332.12013
Pulita, Andrea
5
2015
Arithmetic and differential Swan conductors of rank one representations with finite local monodromy. Zbl 1198.12004
Chiarellotto, Bruno; Pulita, Andrea
5
2009
\(p\)-adic confluence of \(q\)-difference equations. Zbl 1149.12002
Pulita, Andrea
4
2008
Rank one solvable \(p\)-adic differential equations and finite Abelian characters via Lubin-Tate groups. Zbl 1125.12001
Pulita, Andrea
8
2007
Frobenius structure for rank one \(p\)-adic differential equations. Zbl 1179.12001
Pulita, Andrea
1
2005

Citations by Year

Wikidata Timeline