×
Compute Distance To:
Author ID: prusa.vit Recent zbMATH articles by "Průša, Vít"
Published as: Průša, Vít; Pruša, Vít; Průša, V.
External Links: ORCID

Publications by Year

Citations contained in zbMATH Open

14 Publications have been cited 53 times in 50 Documents Cited by Year
Generalizations of the Navier-Stokes fluid from a new perspective. Zbl 1231.76073
Málek, J.; Průša, V.; Rajagopal, K. R.
17
2010
PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion. Zbl 1404.35346
Bulíček, Miroslav; Málek, Josef; Průša, Vít; Süli, Endre
8
2018
Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions. Zbl 1292.76007
Průša, Vít; Rajagopal, K. R.
6
2011
On the influence of boundary condition on stability of Hagen-Poiseuille flow. Zbl 1186.76641
Průša, Vít
4
2009
On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Zbl 1302.74003
Souček, Ondřej; Průša, Vít; Málek, Josef; Rajagopal, K. R.
3
2014
Further remarks on simple flows of fluids with pressure-dependent viscosities. Zbl 1206.35207
Hron, Jaroslav; Málek, Josef; Průša, Vít; Rajagopal, K. R.
3
2011
Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor. Zbl 1428.76017
Janečka, Adam; Málek, Josef; Pruša, Vít; Tierra, Giordano
3
2019
Sufficient conditions for monotone linear stability of steady and oscillatory Hagen–Poiseuille flow. Zbl 1109.76021
Průša, Vít
2
2007
On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck-Boussinesq type approximations. Zbl 1452.76015
Průša, Vít; Rajagopal, K. R.
2
2013
Squeeze flow of a piezoviscous fluid. Zbl 1410.76017
Řehoř, Martin; Pruša, Vít
1
2016
Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range. Zbl 1338.74073
Janečka, A.; Průša, V.; Rajagopal, K. R.
1
2016
Remarks on continuum theory of mixtures: editorial to special issue on mixture theory. Zbl 1381.74065
Mohankumar, K. V.; Průša, Vít; Kannan, K.; Wineman, A. S.
1
2017
Computer modelling of origami-like structures made of light activated shape memory polymers. Zbl 1467.74061
Cehula, Jakub; Průša, Vít
1
2020
A thermodynamic basis for implicit rate-type constitutive relations describing the inelastic response of solids undergoing finite deformation. Zbl 1482.74008
Cichra, David; Průša, Vít
1
2020
Computer modelling of origami-like structures made of light activated shape memory polymers. Zbl 1467.74061
Cehula, Jakub; Průša, Vít
1
2020
A thermodynamic basis for implicit rate-type constitutive relations describing the inelastic response of solids undergoing finite deformation. Zbl 1482.74008
Cichra, David; Průša, Vít
1
2020
Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor. Zbl 1428.76017
Janečka, Adam; Málek, Josef; Pruša, Vít; Tierra, Giordano
3
2019
PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion. Zbl 1404.35346
Bulíček, Miroslav; Málek, Josef; Průša, Vít; Süli, Endre
8
2018
Remarks on continuum theory of mixtures: editorial to special issue on mixture theory. Zbl 1381.74065
Mohankumar, K. V.; Průša, Vít; Kannan, K.; Wineman, A. S.
1
2017
Squeeze flow of a piezoviscous fluid. Zbl 1410.76017
Řehoř, Martin; Pruša, Vít
1
2016
Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range. Zbl 1338.74073
Janečka, A.; Průša, V.; Rajagopal, K. R.
1
2016
On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Zbl 1302.74003
Souček, Ondřej; Průša, Vít; Málek, Josef; Rajagopal, K. R.
3
2014
On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck-Boussinesq type approximations. Zbl 1452.76015
Průša, Vít; Rajagopal, K. R.
2
2013
Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions. Zbl 1292.76007
Průša, Vít; Rajagopal, K. R.
6
2011
Further remarks on simple flows of fluids with pressure-dependent viscosities. Zbl 1206.35207
Hron, Jaroslav; Málek, Josef; Průša, Vít; Rajagopal, K. R.
3
2011
Generalizations of the Navier-Stokes fluid from a new perspective. Zbl 1231.76073
Málek, J.; Průša, V.; Rajagopal, K. R.
17
2010
On the influence of boundary condition on stability of Hagen-Poiseuille flow. Zbl 1186.76641
Průša, Vít
4
2009
Sufficient conditions for monotone linear stability of steady and oscillatory Hagen–Poiseuille flow. Zbl 1109.76021
Průša, Vít
2
2007

Citations by Year