×

zbMATH — the first resource for mathematics

Lumb, Patricia M.

Compute Distance To:
Author ID: lumb.patricia-m Recent zbMATH articles by "Lumb, Patricia M."
Published as: Lumb, P.; Lumb, P. M.; Lumb, Patricia; Lumb, Patricia M.
Documents Indexed: 18 Publications since 2002
Reviewing Activity: 59 Reviews

Publications by Year

Citations contained in zbMATH Open

14 Publications have been cited 65 times in 33 Documents Cited by Year
Mixed-type functional differential equations: A numerical approach. Zbl 1166.65035
Ford, Neville J.; Lumb, Patricia M.
12
2009
Computational approaches to parameter estimation and model selection in immunology. Zbl 1072.92020
Baker, C. T. H.; Bocharov, G. A.; Ford, J. M.; Lumb, P. M.; Norton, S. J.; Paul, C. A. H.; Junt, T.; Krebs, P.; Ludewig, B.
9
2005
New approach to the numerical solution of forward-backward equations. Zbl 1396.65103
Teodoro, Filomena; Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
8
2009
Analytical and numerical investigation of mixed-type functional differential equations. Zbl 1191.65084
Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
6
2010
The numerical solution of forward-backward differential equations: decomposition and related issues. Zbl 1191.65082
Ford, Neville J.; Lumb, Patricia M.; Lima, Pedro M.; Teodoro, M. Filomena
6
2010
Mathematical modelling of plant species interactions in a harsh climate. Zbl 1191.92053
Ford, Neville J.; Lumb, Patricia M.; Ekaka-A, Enu
5
2010
Numerical modelling of a functional differential equation with deviating arguments using a collocation method. Zbl 1167.65409
Teodoro, M. F.; Ford, N. J.; Lima, P. M.; Lumb, P.
4
2008
Analysis and computational approximation of a forward-backward equation arising in nerve conduction. Zbl 1320.34106
Lima, P. M.; Teodoro, M. F.; Ford, N. J.; Lumb, P. M.
3
2013
Finite element solution of a linear mixed-type functional differential equation. Zbl 1200.65054
Lima, Pedro Miguel; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
3
2010
On integral equation formulations of a class of evolutionary equations with time-lag. Zbl 1135.45002
Baker, Christopher T. H.; Lumb, Patricia M.
3
2006
Numerical approaches to delay equations with small solutions. Zbl 1030.65080
Ford, Neville J.; Lumb, Patricia M.
3
2002
Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation. Zbl 1411.65019
Ford, Neville J.; Lima, Pedro M.; Lumb, Patricia M.
1
2017
Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons. Zbl 1295.65078
Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
1
2014
An algorithm to detect small solutions in linear delay differential equations. Zbl 1092.65058
Ford, Neville J.; Lumb, Patricia M.
1
2006
Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation. Zbl 1411.65019
Ford, Neville J.; Lima, Pedro M.; Lumb, Patricia M.
1
2017
Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons. Zbl 1295.65078
Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
1
2014
Analysis and computational approximation of a forward-backward equation arising in nerve conduction. Zbl 1320.34106
Lima, P. M.; Teodoro, M. F.; Ford, N. J.; Lumb, P. M.
3
2013
Analytical and numerical investigation of mixed-type functional differential equations. Zbl 1191.65084
Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
6
2010
The numerical solution of forward-backward differential equations: decomposition and related issues. Zbl 1191.65082
Ford, Neville J.; Lumb, Patricia M.; Lima, Pedro M.; Teodoro, M. Filomena
6
2010
Mathematical modelling of plant species interactions in a harsh climate. Zbl 1191.92053
Ford, Neville J.; Lumb, Patricia M.; Ekaka-A, Enu
5
2010
Finite element solution of a linear mixed-type functional differential equation. Zbl 1200.65054
Lima, Pedro Miguel; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
3
2010
Mixed-type functional differential equations: A numerical approach. Zbl 1166.65035
Ford, Neville J.; Lumb, Patricia M.
12
2009
New approach to the numerical solution of forward-backward equations. Zbl 1396.65103
Teodoro, Filomena; Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
8
2009
Numerical modelling of a functional differential equation with deviating arguments using a collocation method. Zbl 1167.65409
Teodoro, M. F.; Ford, N. J.; Lima, P. M.; Lumb, P.
4
2008
On integral equation formulations of a class of evolutionary equations with time-lag. Zbl 1135.45002
Baker, Christopher T. H.; Lumb, Patricia M.
3
2006
An algorithm to detect small solutions in linear delay differential equations. Zbl 1092.65058
Ford, Neville J.; Lumb, Patricia M.
1
2006
Computational approaches to parameter estimation and model selection in immunology. Zbl 1072.92020
Baker, C. T. H.; Bocharov, G. A.; Ford, J. M.; Lumb, P. M.; Norton, S. J.; Paul, C. A. H.; Junt, T.; Krebs, P.; Ludewig, B.
9
2005
Numerical approaches to delay equations with small solutions. Zbl 1030.65080
Ford, Neville J.; Lumb, Patricia M.
3
2002

Citations by Year