×

zbMATH — the first resource for mathematics

Leven, Emily Sergel

Compute Distance To:
Author ID: leven.emily-sergel Recent zbMATH articles by "Leven, Emily Sergel"
Published as: Leven, Emily; Leven, Emily Sergel; Sergel Leven, Emily
Documents Indexed: 9 Publications since 2014

Publications by Year

Citations contained in zbMATH Open

8 Publications have been cited 68 times in 56 Documents Cited by Year
Multi-cores, posets, and lattice paths. Zbl 1322.05014
Amdeberhan, Tewodros; Leven, Emily Sergel
24
2015
Compositional \((km,kn)\)-shuffle conjectures. Zbl 1404.05213
Bergeron, Francois; Garsia, Adriano; Leven, Emily Sergel; Xin, Guoce
17
2016
Bijections for the Shi and Ish arrangements. Zbl 1284.05331
Leven, Emily; Rhoades, Brendon; Wilson, Andrew Timothy
7
2014
Some remarkable new plethystic operators in the theory of Macdonald polynomials. Zbl 1350.05173
Bergeron, Francois; Garsia, Adriano; Leven, Emily Sergel; Xin, Guoce
6
2016
A new plethystic symmetric function operator and the rational compositional shuffle conjecture at \(t=1/q\). Zbl 1355.05254
Garsia, Adriano; Sergel Leven, Emily; Wallach, Nolan; Xin, Guoce
5
2017
Two special cases of the rational shuffle conjecture. Zbl 1393.05275
Leven, Emily
4
2014
A simpler formula for the number of diagonal inversions of an \((m, n)\)-parking function and a returning fermionic formula. Zbl 1305.05229
Hicks, Angela; Leven, Emily
4
2015
A refinement of the shuffle conjecture with cars of two sizes and \(t=1/q\). Zbl 1298.05321
Hicks, Angela; Leven, Emily
1
2014
A new plethystic symmetric function operator and the rational compositional shuffle conjecture at \(t=1/q\). Zbl 1355.05254
Garsia, Adriano; Sergel Leven, Emily; Wallach, Nolan; Xin, Guoce
5
2017
Compositional \((km,kn)\)-shuffle conjectures. Zbl 1404.05213
Bergeron, Francois; Garsia, Adriano; Leven, Emily Sergel; Xin, Guoce
17
2016
Some remarkable new plethystic operators in the theory of Macdonald polynomials. Zbl 1350.05173
Bergeron, Francois; Garsia, Adriano; Leven, Emily Sergel; Xin, Guoce
6
2016
Multi-cores, posets, and lattice paths. Zbl 1322.05014
Amdeberhan, Tewodros; Leven, Emily Sergel
24
2015
A simpler formula for the number of diagonal inversions of an \((m, n)\)-parking function and a returning fermionic formula. Zbl 1305.05229
Hicks, Angela; Leven, Emily
4
2015
Bijections for the Shi and Ish arrangements. Zbl 1284.05331
Leven, Emily; Rhoades, Brendon; Wilson, Andrew Timothy
7
2014
Two special cases of the rational shuffle conjecture. Zbl 1393.05275
Leven, Emily
4
2014
A refinement of the shuffle conjecture with cars of two sizes and \(t=1/q\). Zbl 1298.05321
Hicks, Angela; Leven, Emily
1
2014

Citations by Year