×

zbMATH — the first resource for mathematics

Kel’manov, Aleksandr Vasil’evich

Compute Distance To:
Author ID: kelmanov.aleksandr-vasilevich Recent zbMATH articles by "Kel'manov, Aleksandr Vasil'evich"
Published as: Kel’manov, A.; Kel’manov, A. V.; Kel’manov, Alexander; Kel’manov, Alexander V.
Homepage: http://math.nsc.ru/~kelmanov/index_ENG.htm
External Links: Math-Net.Ru · ORCID
Documents Indexed: 93 Publications since 1980

Publications by Year

Citations contained in zbMATH

52 Publications have been cited 256 times in 47 Documents Cited by Year
On the complexity of a search for a subset of “similar” vectors. Zbl 1217.90142
Kel’manov, A. V.; Pyatkin, A. V.
16
2008
Complexity of certain problems of searching for subsets of vectors and cluster analysis. Zbl 1224.68120
Kel’manov, A. V.; Pyatkin, A. V.
15
2009
A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence. Zbl 1224.93139
Gimadi, Eh. Kh.; Kel’manov, A. V.; Kel’manova, M. A.; Khamidullin, S. A.
15
2006
An FPTAS for a vector subset search problem. Zbl 1324.68245
Kel’manov, A. V.; Romanchenko, S. M.
12
2014
Posterior detection of a given number of identical subsequences in a quasi-periodic sequence. Zbl 1023.60044
Kel’manov, A. V.; Khamidullin, S. A.
12
2001
A randomized algorithm for two-cluster partition of a set of vectors. Zbl 1331.68288
Kel’manov, A. V.; Khandeev, V. I.
11
2015
On complexity of some problems of cluster analysis of vector sequences. Zbl 1324.68047
Kel’manov, A. V.; Pyatkin, A. V.
11
2013
An approximation algorithm for a problem of cluster analysis. Zbl 1249.90186
Dolgushev, A. V.; Kel’manov, A. V.
11
2011
A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train. Zbl 1369.94365
Kel’manov, Alexander V.; Jeon, Byeungwoo
10
2004
Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters. Zbl 1362.68292
Dolgushev, A. V.; Kel’manov, A. V.; Shenmaier, V. V.
8
2016
A 2-approximation polynomial algorithm for a clustering problem. Zbl 1324.68244
Kel’manov, A. V.; Khandeev, V. I.
7
2013
On the complexity of some cluster analysis problems. Zbl 1249.90190
Kel’manov, A. V.
7
2011
On the complexity of some data analysis problems. Zbl 1224.93108
Kel’manov, A. V.
7
2010
Off-line detection of a quasi-periodically recurring fragment in a numerical sequence. Zbl 1180.93099
Kel’manov, A. V.
7
2008
On the complexity of some quadratic Euclidean 2-clustering problems. Zbl 1362.68092
Kel’manov, A. V.; Pyatkin, Artem V.
6
2016
Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem. Zbl 1362.68091
Kel’manov, A. V.; Khandeev, V. I.
6
2016
An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors. Zbl 1349.68151
Kel’manov, A. V.; Khandeev, V. I.
6
2015
NP-hardness of some quadratic Euclidean 2-clustering problems. Zbl 1335.68096
Kel’manov, A. V.; Pyatkin, A. V.
6
2015
Pseudopolynomial algorithms for certain computationally hard vector subset and cluster analysis problems. Zbl 1307.68070
Kel’manov, A. V.; Romanchenko, S. M.
6
2012
NP-completeness of some problems of a vectors subset choice. Zbl 1249.68080
Kel’manov, A. V.; Pyatkin, A. V.
6
2010
A fully polynomial-time approximation scheme for a special case of a balanced 2-clustering problem. Zbl 1380.68401
Kel’manov, Alexander; Motkova, Anna
5
2016
An approximating polynomial algorithm for a sequence partitioning problem. Zbl 1324.68243
Kel’manov, A. V.; Khamidullin, S. A.
5
2014
NP-hardness of the Euclidean Max-Cut problem. Zbl 1307.90212
Ageev, A. A.; Kel’manov, A. V.; Pyatkin, A. V.
5
2014
Exact pseudo-polynomial algorithms for a balanced 2-clustering problem. Zbl 1374.90323
Kel’manov, A. V.; Motkova, A. V.
4
2016
2-approximation algorithm for finding a clique with minimum weight of vertices and edges. Zbl 1302.90175
Eremin, I. I.; Gimadi, E. K.; Kel’manov, A. V.; Pyatkin, A. V.; Khachai, M. Yu.
4
2014
A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets. Zbl 1297.62141
Galashov, A. E.; Kel’manov, A. V.
4
2014
Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center. Zbl 06864307
Kel’manov, A. V.; Motkova, A. V.
3
2018
An approximation polynomial-time algorithm for a sequence bi-clustering problem. Zbl 1337.68293
Kel’manov, A. V.; Khamidullin, S. A.
3
2015
Efficient algorithms with performance guarantees for some problems of finding several cliques in a complete undirected weighted graph. Zbl 1319.05125
Gimadi, E. Kh.; Kel’manov, A. V.; Pyatkin, A. V.; Khachai, M. Yu.
3
2015
Accurate pseudopolynomial-time algorithms for certain NP-hard problems of searching for a vector subsequence. Zbl 1274.90517
Kel’manov, A. V.; Romanchenko, S. M.; Khamidullin, S. A.
3
2013
On the complexity of some Euclidean optimal summing problems. Zbl 1348.90653
Eremeev, A. V.; Kel’manov, A. V.; Pyatkin, Artem V.
2
2016
A fully polynomial-time approximation scheme for a sequence 2-cluster partitioning problem. Zbl 1349.62274
Kel’manov, A. V.; Khamidullin, S. A.; Khandeev, V. I.
2
2016
Complexity of the weighted max-cut in Euclidean space. Zbl 1324.05188
Ageev, A. A.; Kel’manov, A. V.; Pyatkin, A. V.
2
2014
On the complexity of certain problems of choosing subset of vectors. Zbl 1274.90251
Kel’manov, A. V.; Pyatkin, A. V.
2
2012
An approximation algorithm for solving the problem of the search of a subset of vectors. Zbl 1249.90189
Kel’manov, A. V.; Romanchenko, S. M.
2
2011
On the algorithmic complexity of a problem in cluster analysis. Zbl 1248.62101
Dolgushev, A. V.; Kel’manov, A. V.
2
2010
A posteriori joint detection of reference fragments in a quasi-periodic sequence. Zbl 1164.40305
Kel’manov, A. V.; Mikhailova, L. V.
2
2008
Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments. Zbl 1210.93072
Kel’manov, A. V.; Mikhaĭlova, L. V.
2
2006
Detection of a quasiperiodic sequence which contains identical subsequences-fragments. Zbl 1075.93540
Kel’manov, A. V.; Khamidullin, S. A.; Okol’nishnikova, L. V.
2
2002
A posteriori detection of identical subsequences (fragments) in a quasiperiodic sequence. Zbl 1075.93539
Kel’manov, A. V.; Khamidullin, S. A.; Okol’nishnikova, L. V.
2
2002
NP-hardness of quadratic Euclidean 1-mean and 1-median 2-clustering problem with constraints on the cluster sizes. Zbl 1452.68084
Kel’manov, A. V.; Pyatkin, A. V.; Khandeev, V. I.
1
2019
Maximum diversity problem with squared Euclidean distance. Zbl 1446.90160
Eremeev, Anton V.; Kel’manov, Alexander V.; Kovalyov, Mikhail Y.; Pyatkin, Artem V.
1
2019
Approximation scheme for the problem of weighted 2-clustering with a fixed center of one cluster. Zbl 07072463
Kel’manov, A. V.; Motkova, A. V.; Shenmaier, V. V.
1
2018
An approximation scheme for the problem of finding a subsequence. Zbl 1399.68314
Kel’manov, A. V.; Romanchenko, S. M.; Khamidullin, S. A.
1
2017
Exact pseudopolynomial algorithm for one sequence partitioning problem. Zbl 1366.90225
Kel’manov, A. V.; Khamidullin, S. A.; Khandeev, V. I.
1
2017
Approximation algorithms for some intractable problems of choosing a vector subsequence. Zbl 1324.68246
Kel’manov, A. V.; Romanchenko, S. M.; Khamidullin, S. A.
1
2012
On a variant of the problem of choosing a vector subset. Zbl 1249.90343
Kel’manov, A. V.; Pyatkin, A. V.
1
2008
Recognition of a numerical sequence that includes series of quasiperiodically repeating standard fragments. Zbl 1224.93111
Kel’manov, A. V.; Mikhajlova, L. V.
1
2007
Detection of a numerical sequence which contains series of quasiperiodically repeated standard fragments. The case of prescribed number of the fragments. Zbl 1097.93035
Kel’manov, A. V.; Mikhaĭlova, L. V.
1
2005
A posteriori joint detection and distinguishing of subsequences in a quasiperiodic sequence. Zbl 1025.93028
Kel’manov, A. V.; Okol’nishnikova, L. V.
1
2000
A posteriori joint detection and distinction of a given number of subsequences in a quasiperiodic sequence. Zbl 0937.93045
Kel’manov, A. V.; Khamidullin, S. A.
1
1999
Recognition of a quasiperiodic sequence consisting of a given number of identical subsequences. Zbl 0930.62087
Kel’manov, A. V.; Khamidullin, S. A.
1
1999
NP-hardness of quadratic Euclidean 1-mean and 1-median 2-clustering problem with constraints on the cluster sizes. Zbl 1452.68084
Kel’manov, A. V.; Pyatkin, A. V.; Khandeev, V. I.
1
2019
Maximum diversity problem with squared Euclidean distance. Zbl 1446.90160
Eremeev, Anton V.; Kel’manov, Alexander V.; Kovalyov, Mikhail Y.; Pyatkin, Artem V.
1
2019
Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center. Zbl 06864307
Kel’manov, A. V.; Motkova, A. V.
3
2018
Approximation scheme for the problem of weighted 2-clustering with a fixed center of one cluster. Zbl 07072463
Kel’manov, A. V.; Motkova, A. V.; Shenmaier, V. V.
1
2018
An approximation scheme for the problem of finding a subsequence. Zbl 1399.68314
Kel’manov, A. V.; Romanchenko, S. M.; Khamidullin, S. A.
1
2017
Exact pseudopolynomial algorithm for one sequence partitioning problem. Zbl 1366.90225
Kel’manov, A. V.; Khamidullin, S. A.; Khandeev, V. I.
1
2017
Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters. Zbl 1362.68292
Dolgushev, A. V.; Kel’manov, A. V.; Shenmaier, V. V.
8
2016
On the complexity of some quadratic Euclidean 2-clustering problems. Zbl 1362.68092
Kel’manov, A. V.; Pyatkin, Artem V.
6
2016
Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem. Zbl 1362.68091
Kel’manov, A. V.; Khandeev, V. I.
6
2016
A fully polynomial-time approximation scheme for a special case of a balanced 2-clustering problem. Zbl 1380.68401
Kel’manov, Alexander; Motkova, Anna
5
2016
Exact pseudo-polynomial algorithms for a balanced 2-clustering problem. Zbl 1374.90323
Kel’manov, A. V.; Motkova, A. V.
4
2016
On the complexity of some Euclidean optimal summing problems. Zbl 1348.90653
Eremeev, A. V.; Kel’manov, A. V.; Pyatkin, Artem V.
2
2016
A fully polynomial-time approximation scheme for a sequence 2-cluster partitioning problem. Zbl 1349.62274
Kel’manov, A. V.; Khamidullin, S. A.; Khandeev, V. I.
2
2016
A randomized algorithm for two-cluster partition of a set of vectors. Zbl 1331.68288
Kel’manov, A. V.; Khandeev, V. I.
11
2015
An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors. Zbl 1349.68151
Kel’manov, A. V.; Khandeev, V. I.
6
2015
NP-hardness of some quadratic Euclidean 2-clustering problems. Zbl 1335.68096
Kel’manov, A. V.; Pyatkin, A. V.
6
2015
An approximation polynomial-time algorithm for a sequence bi-clustering problem. Zbl 1337.68293
Kel’manov, A. V.; Khamidullin, S. A.
3
2015
Efficient algorithms with performance guarantees for some problems of finding several cliques in a complete undirected weighted graph. Zbl 1319.05125
Gimadi, E. Kh.; Kel’manov, A. V.; Pyatkin, A. V.; Khachai, M. Yu.
3
2015
An FPTAS for a vector subset search problem. Zbl 1324.68245
Kel’manov, A. V.; Romanchenko, S. M.
12
2014
An approximating polynomial algorithm for a sequence partitioning problem. Zbl 1324.68243
Kel’manov, A. V.; Khamidullin, S. A.
5
2014
NP-hardness of the Euclidean Max-Cut problem. Zbl 1307.90212
Ageev, A. A.; Kel’manov, A. V.; Pyatkin, A. V.
5
2014
2-approximation algorithm for finding a clique with minimum weight of vertices and edges. Zbl 1302.90175
Eremin, I. I.; Gimadi, E. K.; Kel’manov, A. V.; Pyatkin, A. V.; Khachai, M. Yu.
4
2014
A 2-approximate algorithm to solve one problem of the family of disjoint vector subsets. Zbl 1297.62141
Galashov, A. E.; Kel’manov, A. V.
4
2014
Complexity of the weighted max-cut in Euclidean space. Zbl 1324.05188
Ageev, A. A.; Kel’manov, A. V.; Pyatkin, A. V.
2
2014
On complexity of some problems of cluster analysis of vector sequences. Zbl 1324.68047
Kel’manov, A. V.; Pyatkin, A. V.
11
2013
A 2-approximation polynomial algorithm for a clustering problem. Zbl 1324.68244
Kel’manov, A. V.; Khandeev, V. I.
7
2013
Accurate pseudopolynomial-time algorithms for certain NP-hard problems of searching for a vector subsequence. Zbl 1274.90517
Kel’manov, A. V.; Romanchenko, S. M.; Khamidullin, S. A.
3
2013
Pseudopolynomial algorithms for certain computationally hard vector subset and cluster analysis problems. Zbl 1307.68070
Kel’manov, A. V.; Romanchenko, S. M.
6
2012
On the complexity of certain problems of choosing subset of vectors. Zbl 1274.90251
Kel’manov, A. V.; Pyatkin, A. V.
2
2012
Approximation algorithms for some intractable problems of choosing a vector subsequence. Zbl 1324.68246
Kel’manov, A. V.; Romanchenko, S. M.; Khamidullin, S. A.
1
2012
An approximation algorithm for a problem of cluster analysis. Zbl 1249.90186
Dolgushev, A. V.; Kel’manov, A. V.
11
2011
On the complexity of some cluster analysis problems. Zbl 1249.90190
Kel’manov, A. V.
7
2011
An approximation algorithm for solving the problem of the search of a subset of vectors. Zbl 1249.90189
Kel’manov, A. V.; Romanchenko, S. M.
2
2011
On the complexity of some data analysis problems. Zbl 1224.93108
Kel’manov, A. V.
7
2010
NP-completeness of some problems of a vectors subset choice. Zbl 1249.68080
Kel’manov, A. V.; Pyatkin, A. V.
6
2010
On the algorithmic complexity of a problem in cluster analysis. Zbl 1248.62101
Dolgushev, A. V.; Kel’manov, A. V.
2
2010
Complexity of certain problems of searching for subsets of vectors and cluster analysis. Zbl 1224.68120
Kel’manov, A. V.; Pyatkin, A. V.
15
2009
On the complexity of a search for a subset of “similar” vectors. Zbl 1217.90142
Kel’manov, A. V.; Pyatkin, A. V.
16
2008
Off-line detection of a quasi-periodically recurring fragment in a numerical sequence. Zbl 1180.93099
Kel’manov, A. V.
7
2008
A posteriori joint detection of reference fragments in a quasi-periodic sequence. Zbl 1164.40305
Kel’manov, A. V.; Mikhailova, L. V.
2
2008
On a variant of the problem of choosing a vector subset. Zbl 1249.90343
Kel’manov, A. V.; Pyatkin, A. V.
1
2008
Recognition of a numerical sequence that includes series of quasiperiodically repeating standard fragments. Zbl 1224.93111
Kel’manov, A. V.; Mikhajlova, L. V.
1
2007
A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence. Zbl 1224.93139
Gimadi, Eh. Kh.; Kel’manov, A. V.; Kel’manova, M. A.; Khamidullin, S. A.
15
2006
Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments. Zbl 1210.93072
Kel’manov, A. V.; Mikhaĭlova, L. V.
2
2006
Detection of a numerical sequence which contains series of quasiperiodically repeated standard fragments. The case of prescribed number of the fragments. Zbl 1097.93035
Kel’manov, A. V.; Mikhaĭlova, L. V.
1
2005
A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train. Zbl 1369.94365
Kel’manov, Alexander V.; Jeon, Byeungwoo
10
2004
Detection of a quasiperiodic sequence which contains identical subsequences-fragments. Zbl 1075.93540
Kel’manov, A. V.; Khamidullin, S. A.; Okol’nishnikova, L. V.
2
2002
A posteriori detection of identical subsequences (fragments) in a quasiperiodic sequence. Zbl 1075.93539
Kel’manov, A. V.; Khamidullin, S. A.; Okol’nishnikova, L. V.
2
2002
Posterior detection of a given number of identical subsequences in a quasi-periodic sequence. Zbl 1023.60044
Kel’manov, A. V.; Khamidullin, S. A.
12
2001
A posteriori joint detection and distinguishing of subsequences in a quasiperiodic sequence. Zbl 1025.93028
Kel’manov, A. V.; Okol’nishnikova, L. V.
1
2000
A posteriori joint detection and distinction of a given number of subsequences in a quasiperiodic sequence. Zbl 0937.93045
Kel’manov, A. V.; Khamidullin, S. A.
1
1999
Recognition of a quasiperiodic sequence consisting of a given number of identical subsequences. Zbl 0930.62087
Kel’manov, A. V.; Khamidullin, S. A.
1
1999

Citations by Year