×

zbMATH — the first resource for mathematics

Hölzl, Rupert

Compute Distance To:
Author ID: holzl.rupert Recent zbMATH articles by "Hölzl, Rupert"
Published as: Hölzl, R.; Hölzl, Rupert
Homepage: https://www.hoelzl.fr/
External Links: MGP · dblp
Documents Indexed: 29 Publications since 2008, including 1 Book
Reviewing Activity: 3 Reviews

Publications by Year

Citations contained in zbMATH Open

19 Publications have been cited 78 times in 67 Documents Cited by Year
Probabilistic computability and choice. Zbl 1320.03071
Brattka, Vasco; Gherardi, Guido; Hölzl, Rupert
20
2015
Denjoy, Demuth and density. Zbl 1338.03088
Bienvenu, Laurent; Hölzl, Rupert; Miller, Joseph S.; Nies, André
8
2014
The Vitali covering theorem in the Weihrauch lattice. Zbl 06700060
Brattka, Vasco; Gherardi, Guido; Hölzl, Rupert; Pauly, Arno
7
2017
Time-bounded Kolmogorov complexity and Solovay functions. Zbl 1250.03068
Hölzl, Rupert; Kräling, Thorsten; Merkle, Wolfgang
7
2009
From bi-immunity to absolute undecidability. Zbl 1349.03044
Bienvenu, Laurent; Day, Adam R.; Hölzl, Rupert
6
2013
Traceable sets. Zbl 1198.68155
Hölzl, Rupert; Merkle, Wolfgang
6
2010
Las Vegas computability and algorithmic randomness. Zbl 1355.68132
Brattka, Vasco; Gherardi, Guido; Hölzl, Rupert
4
2015
Time-bounded Kolmogorov complexity and Solovay functions. Zbl 1261.68077
Hölzl, Rupert; Kräling, Thorsten; Merkle, Wolfgang
4
2013
Analogues of Chaitin’s Omega in the computably enumerable sets. Zbl 1259.68098
Barmpalias, G.; Hölzl, R.; Lewis, A. E. M.; Merkle, W.
4
2013
Learning pattern languages over groups. Zbl 1398.68264
Hölzl, Rupert; Jain, Sanjay; Stephan, Frank
2
2016
The Denjoy alternative for computable functions. Zbl 1254.03081
Bienvenu, Laurent; Hölzl, Rupert; Miller, Joseph S.; Nies, André
2
2012
Monte Carlo computability. Zbl 1402.03068
Brattka, Vasco; Hölzl, Rupert; Kuyper, Rutger
1
2017
Randomness and semimeasures. Zbl 1417.03242
Bienvenu, Laurent; Hölzl, Rupert; Porter, Christopher P.; Shafer, Paul
1
2017
Randomness for computable measures and initial segment complexity. Zbl 1404.03039
Hölzl, Rupert; Porter, Christopher P.
1
2017
Inductive inference and reverse mathematics. Zbl 1403.03017
Hölzl, Rupert; Jain, Sanjay; Stephan, Frank
1
2016
Inductive inference and reverse mathematics. Zbl 1356.03051
Hölzl, Rupert; Jain, Sanjay; Stephan, Frank
1
2015
Universality, optimality, and randomness deficiency. Zbl 1386.03047
Hölzl, Rupert; Shafer, Paul
1
2015
Separations of non-monotonic randomness notions. Zbl 1316.03021
Bienvenu, Laurent; Hölzl, Rupert; Kräling, Thorsten; Merkle, Wolfgang
1
2012
Initial segment complexities of randomness notions. Zbl 1198.68154
Hölzl, Rupert; Kräling, Thorsten; Stephan, Frank; Wu, Guohua
1
2010
The Vitali covering theorem in the Weihrauch lattice. Zbl 06700060
Brattka, Vasco; Gherardi, Guido; Hölzl, Rupert; Pauly, Arno
7
2017
Monte Carlo computability. Zbl 1402.03068
Brattka, Vasco; Hölzl, Rupert; Kuyper, Rutger
1
2017
Randomness and semimeasures. Zbl 1417.03242
Bienvenu, Laurent; Hölzl, Rupert; Porter, Christopher P.; Shafer, Paul
1
2017
Randomness for computable measures and initial segment complexity. Zbl 1404.03039
Hölzl, Rupert; Porter, Christopher P.
1
2017
Learning pattern languages over groups. Zbl 1398.68264
Hölzl, Rupert; Jain, Sanjay; Stephan, Frank
2
2016
Inductive inference and reverse mathematics. Zbl 1403.03017
Hölzl, Rupert; Jain, Sanjay; Stephan, Frank
1
2016
Probabilistic computability and choice. Zbl 1320.03071
Brattka, Vasco; Gherardi, Guido; Hölzl, Rupert
20
2015
Las Vegas computability and algorithmic randomness. Zbl 1355.68132
Brattka, Vasco; Gherardi, Guido; Hölzl, Rupert
4
2015
Inductive inference and reverse mathematics. Zbl 1356.03051
Hölzl, Rupert; Jain, Sanjay; Stephan, Frank
1
2015
Universality, optimality, and randomness deficiency. Zbl 1386.03047
Hölzl, Rupert; Shafer, Paul
1
2015
Denjoy, Demuth and density. Zbl 1338.03088
Bienvenu, Laurent; Hölzl, Rupert; Miller, Joseph S.; Nies, André
8
2014
From bi-immunity to absolute undecidability. Zbl 1349.03044
Bienvenu, Laurent; Day, Adam R.; Hölzl, Rupert
6
2013
Time-bounded Kolmogorov complexity and Solovay functions. Zbl 1261.68077
Hölzl, Rupert; Kräling, Thorsten; Merkle, Wolfgang
4
2013
Analogues of Chaitin’s Omega in the computably enumerable sets. Zbl 1259.68098
Barmpalias, G.; Hölzl, R.; Lewis, A. E. M.; Merkle, W.
4
2013
The Denjoy alternative for computable functions. Zbl 1254.03081
Bienvenu, Laurent; Hölzl, Rupert; Miller, Joseph S.; Nies, André
2
2012
Separations of non-monotonic randomness notions. Zbl 1316.03021
Bienvenu, Laurent; Hölzl, Rupert; Kräling, Thorsten; Merkle, Wolfgang
1
2012
Traceable sets. Zbl 1198.68155
Hölzl, Rupert; Merkle, Wolfgang
6
2010
Initial segment complexities of randomness notions. Zbl 1198.68154
Hölzl, Rupert; Kräling, Thorsten; Stephan, Frank; Wu, Guohua
1
2010
Time-bounded Kolmogorov complexity and Solovay functions. Zbl 1250.03068
Hölzl, Rupert; Kräling, Thorsten; Merkle, Wolfgang
7
2009

Citations by Year