×

zbMATH — the first resource for mathematics

Erhard, Dirk

Compute Distance To:
Author ID: erhard.dirk Recent zbMATH articles by "Erhard, Dirk"
Published as: Erhard, Dirk; Erhard, D.
Documents Indexed: 10 Publications since 2014

Publications by Year

Citations contained in zbMATH Open

7 Publications have been cited 17 times in 15 Documents Cited by Year
Asymptotics of the critical time in Wiener sausage percolation with a small radius. Zbl 1346.60138
Erhard, Dirk; Poisat, Julien
5
2016
Discretisation of regularity structures. Zbl 1450.60065
Erhard, Dirk; Hairer, Martin
4
2019
The parabolic Anderson model in a dynamic random environment: basic properties of the quenched Lyapunov exponent. Zbl 1314.60155
Erhard, D.; Den Hollander, F.; Maillard, G.
3
2014
The parabolic Anderson model in a dynamic random environment: space-time ergodicity for the quenched Lyapunov exponent. Zbl 1373.60156
Erhard, D.; den Hollander, F.; Maillard, G.
2
2015
Brownian paths homogeneously distributed in space: percolation phase transition and uniqueness of the unbounded cluster. Zbl 1386.60321
Erhard, Dirk; Martínez, Julián; Poisat, Julien
1
2017
Parabolic Anderson model in a dynamic random environment: random conductances. Zbl 1413.60095
Erhard, D.; den Hollander, F.; Maillard, G.
1
2016
Non-equilibrium fluctuations for the SSEP with a slow bond. Zbl 1434.60286
Erhard, D.; Franco, T.; Gonçalves, P.; Neumann, A.; Tavares, M.
1
2020
Non-equilibrium fluctuations for the SSEP with a slow bond. Zbl 1434.60286
Erhard, D.; Franco, T.; Gonçalves, P.; Neumann, A.; Tavares, M.
1
2020
Discretisation of regularity structures. Zbl 1450.60065
Erhard, Dirk; Hairer, Martin
4
2019
Brownian paths homogeneously distributed in space: percolation phase transition and uniqueness of the unbounded cluster. Zbl 1386.60321
Erhard, Dirk; Martínez, Julián; Poisat, Julien
1
2017
Asymptotics of the critical time in Wiener sausage percolation with a small radius. Zbl 1346.60138
Erhard, Dirk; Poisat, Julien
5
2016
Parabolic Anderson model in a dynamic random environment: random conductances. Zbl 1413.60095
Erhard, D.; den Hollander, F.; Maillard, G.
1
2016
The parabolic Anderson model in a dynamic random environment: space-time ergodicity for the quenched Lyapunov exponent. Zbl 1373.60156
Erhard, D.; den Hollander, F.; Maillard, G.
2
2015
The parabolic Anderson model in a dynamic random environment: basic properties of the quenched Lyapunov exponent. Zbl 1314.60155
Erhard, D.; Den Hollander, F.; Maillard, G.
3
2014

Citations by Year