×

zbMATH — the first resource for mathematics

Curtis, Christopher W.

Compute Distance To:
Author ID: curtis.christopher-w Recent zbMATH articles by "Curtis, Christopher W."
Published as: Curtis, C. W.; Curtis, Christopher W.
Documents Indexed: 15 Publications since 2010, including 1 Book

Publications by Year

Citations contained in zbMATH

11 Publications have been cited 49 times in 42 Documents Cited by Year
On tight-binding approximations in optical lattices. Zbl 1297.35212
Ablowitz, Mark J.; Curtis, Christopher W.; Zhu, Yi
10
2012
On the convergence of Hill’s method. Zbl 1205.34116
Curtis, Christopher W.; Deconinck, Bernard
10
2010
Spectral stability of stationary solutions of a Boussinesq system describing long waves in dispersive media. Zbl 1300.35090
Chen, Min; Curtis, Christopher W.; Deconinck, Bernard; Lee, Crystal W.; Nguyen, Nghiem
9
2010
Conservation laws and non-decaying solutions for the Benney-Luke equation. Zbl 1320.76018
Ablowitz, Mark J.; Curtis, Christopher W.
5
2013
Particle paths in nonlinear Schrödinger models in the presence of linear shear currents. Zbl 1415.76063
Curtis, C. W.; Carter, J. D.; Kalisch, H.
3
2018
Shallow waves in density stratified shear currents. Zbl 1408.76356
Curtis, C. W.; Oliveras, K. L.; Morrison, T.
3
2017
On the existence of real spectra in \(\mathcal {PT}\)-symmetric honeycomb optical lattices. Zbl 1291.81151
Curtis, Christopher W.; Ablowitz, Mark J.
3
2014
Dynamics in \(\mathcal{PT}\)-symmetric honeycomb lattices with nonlinearity. Zbl 1333.35248
Curtis, Christopher W.; Zhu, Yi
2
2015
On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation. Zbl 1432.76066
Ablowitz, Mark J.; Curtis, Christopher W.
2
2011
Three-dimensional surface water waves governed by the forced Benney-Luke equation. Zbl 1330.35376
Curtis, Christopher W.; Shen, Samuel S. P.
1
2015
Nonlinear wave equations: analytic and computational techniques. AMS special session on nonlinear waves and integrable systems, University of Colorado, Boulder, CO, USA, April 13–14, 2013. Proceedings. Zbl 1314.35002
Curtis, Christopher W. (ed.); Dzhamay, Anton (ed.); Hereman, Willy A. (ed.); Prinari, Barbara (ed.)
1
2015
Particle paths in nonlinear Schrödinger models in the presence of linear shear currents. Zbl 1415.76063
Curtis, C. W.; Carter, J. D.; Kalisch, H.
3
2018
Shallow waves in density stratified shear currents. Zbl 1408.76356
Curtis, C. W.; Oliveras, K. L.; Morrison, T.
3
2017
Dynamics in \(\mathcal{PT}\)-symmetric honeycomb lattices with nonlinearity. Zbl 1333.35248
Curtis, Christopher W.; Zhu, Yi
2
2015
Three-dimensional surface water waves governed by the forced Benney-Luke equation. Zbl 1330.35376
Curtis, Christopher W.; Shen, Samuel S. P.
1
2015
Nonlinear wave equations: analytic and computational techniques. AMS special session on nonlinear waves and integrable systems, University of Colorado, Boulder, CO, USA, April 13–14, 2013. Proceedings. Zbl 1314.35002
Curtis, Christopher W. (ed.); Dzhamay, Anton (ed.); Hereman, Willy A. (ed.); Prinari, Barbara (ed.)
1
2015
On the existence of real spectra in \(\mathcal {PT}\)-symmetric honeycomb optical lattices. Zbl 1291.81151
Curtis, Christopher W.; Ablowitz, Mark J.
3
2014
Conservation laws and non-decaying solutions for the Benney-Luke equation. Zbl 1320.76018
Ablowitz, Mark J.; Curtis, Christopher W.
5
2013
On tight-binding approximations in optical lattices. Zbl 1297.35212
Ablowitz, Mark J.; Curtis, Christopher W.; Zhu, Yi
10
2012
On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation. Zbl 1432.76066
Ablowitz, Mark J.; Curtis, Christopher W.
2
2011
On the convergence of Hill’s method. Zbl 1205.34116
Curtis, Christopher W.; Deconinck, Bernard
10
2010
Spectral stability of stationary solutions of a Boussinesq system describing long waves in dispersive media. Zbl 1300.35090
Chen, Min; Curtis, Christopher W.; Deconinck, Bernard; Lee, Crystal W.; Nguyen, Nghiem
9
2010

Citations by Year