×

zbMATH — the first resource for mathematics

Charalambous, Michael George

Compute Distance To:
Author ID: charalambous.michael-george Recent zbMATH articles by "Charalambous, Michael George"
Published as: Charalambous, M. G.; Charalambous, Michael G.
External Links: MGP
Documents Indexed: 49 Publications since 1974, including 1 Book
Reviewing Activity: 39 Reviews

Publications by Year

Citations contained in zbMATH Open

32 Publications have been cited 115 times in 69 Documents Cited by Year
Dimension theory for \(\sigma\)-frames. Zbl 0281.54018
Charalambous, M. G.
17
1974
A new covering dimension function for uniform spaces. Zbl 0306.54048
Charalambous, M. G.
14
1975
The dimension of inverse limits. Zbl 0348.54029
Charalambous, M. G.
8
1976
Spaces with increment of dimension n. Zbl 0341.54045
Charalambous, M. G.
7
1976
Some estimates of the inductive dimensions of the union of two sets. Zbl 1063.54025
Charalambous, Michael G.; Chatyrko, Vitalij A.
7
2005
Two new inductive dimension functions for topological spaces. Zbl 0332.54028
Charalambous, M. G.
6
1976
The dimension of inverse limit and N-compact spaces. Zbl 0489.54033
Charalambous, M. G.
5
1982
The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces. Zbl 1062.54032
Charalambous, Michael G.
5
2004
Further theory and applications of covering dimension of uniform spaces. Zbl 0776.54024
Charalambous, M. G.
5
1991
Rigid continua and transfinite inductive dimension. Zbl 1211.54046
Charalambous, Michael G.; Krzempek, Jerzy
4
2010
Spaces with noncoinciding dimensions. Zbl 0592.54033
Charalambous, M. G.
4
1985
The dimension of paracompact normal \(\kappa\)-frames. Zbl 0951.54034
Charalambous, M. G.
3
1995
On transfinite inductive dimension and deficiency modulo a class \(\mathcal P\). Zbl 0931.54029
Charalambous, M. G.
3
1997
An example concerning inverse limit sequences of normal spaces. Zbl 0451.54028
Charalambous, M. G.
3
1980
Approximate inverse systems of uniform spaces and an application of inverse systems. Zbl 0785.54016
Charalambous, M. G.
3
1991
Inductive dimension and inverse sequences of compact spaces. Zbl 0451.54029
Charalambous, M. G.
2
1981
Direct constructions of the paracompact coreflections of frames. Zbl 1022.06002
Charalambous, M. G.
2
2002
A note on the Brouwer dimension of chainable spaces. Zbl 1118.54019
Charalambous, Michael G.
2
2006
Inductive dimension theory for uniform spaces. Zbl 0268.54032
Charalambous, M. G.
2
1975
Axiomatic characterisations of dimension. Zbl 0329.54033
Charalambous, M. G.
1
1976
On Dimensionsgrad, resolutions, and chainable continua. Zbl 1213.54048
Charalambous, Michael G.; Krzempek, Jerzy
1
2010
Resolving a question of Arkhangel’skiĭ’s. Zbl 1107.54027
Charalambous, Michael G.
1
2006
Compactifications with countable remainder. Zbl 0439.54025
Charalambous, M. G.
1
1980
Notes on the inductive dimension \(Ind_0\). Zbl 1071.54017
Charalambous, Michael G.; Chatyrko, Vitalij A.
1
2003
The behaviour of dimension functions on unions of closed subsets. Zbl 1063.54026
Charalambous, Michael G.; Chatyrko, Vitalij A.; Hattori, Yasunao
1
2004
The Freudenthal compactification as an inverse limit. Zbl 1318.54006
Charalambous, Michael G.
1
2015
The gap between the dimensions of countably paracompact spaces. Zbl 1153.54015
Charalambous, Michael G.
1
2008
A note on the dimension of products. Zbl 0371.54055
Charalambous, M. G.
1
1977
Universal spaces for locally finite-dimensional Tychonoff spaces. Zbl 0675.54035
Charalambous, M. G.
1
1989
The factorization theorem for paracompact \(\Sigma\)-spaces. Zbl 0709.54022
Charalambous, M. G.
1
1988
Semicompactness and dimension of increments. Zbl 0592.54035
Charalambous, M. G.
1
1986
On inductive dimension modulo a simplicial complex. Zbl 1241.54022
Charalambous, Michael G.; Krzempek, Jerzy
1
2012
The Freudenthal compactification as an inverse limit. Zbl 1318.54006
Charalambous, Michael G.
1
2015
On inductive dimension modulo a simplicial complex. Zbl 1241.54022
Charalambous, Michael G.; Krzempek, Jerzy
1
2012
Rigid continua and transfinite inductive dimension. Zbl 1211.54046
Charalambous, Michael G.; Krzempek, Jerzy
4
2010
On Dimensionsgrad, resolutions, and chainable continua. Zbl 1213.54048
Charalambous, Michael G.; Krzempek, Jerzy
1
2010
The gap between the dimensions of countably paracompact spaces. Zbl 1153.54015
Charalambous, Michael G.
1
2008
A note on the Brouwer dimension of chainable spaces. Zbl 1118.54019
Charalambous, Michael G.
2
2006
Resolving a question of Arkhangel’skiĭ’s. Zbl 1107.54027
Charalambous, Michael G.
1
2006
Some estimates of the inductive dimensions of the union of two sets. Zbl 1063.54025
Charalambous, Michael G.; Chatyrko, Vitalij A.
7
2005
The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces. Zbl 1062.54032
Charalambous, Michael G.
5
2004
The behaviour of dimension functions on unions of closed subsets. Zbl 1063.54026
Charalambous, Michael G.; Chatyrko, Vitalij A.; Hattori, Yasunao
1
2004
Notes on the inductive dimension \(Ind_0\). Zbl 1071.54017
Charalambous, Michael G.; Chatyrko, Vitalij A.
1
2003
Direct constructions of the paracompact coreflections of frames. Zbl 1022.06002
Charalambous, M. G.
2
2002
On transfinite inductive dimension and deficiency modulo a class \(\mathcal P\). Zbl 0931.54029
Charalambous, M. G.
3
1997
The dimension of paracompact normal \(\kappa\)-frames. Zbl 0951.54034
Charalambous, M. G.
3
1995
Further theory and applications of covering dimension of uniform spaces. Zbl 0776.54024
Charalambous, M. G.
5
1991
Approximate inverse systems of uniform spaces and an application of inverse systems. Zbl 0785.54016
Charalambous, M. G.
3
1991
Universal spaces for locally finite-dimensional Tychonoff spaces. Zbl 0675.54035
Charalambous, M. G.
1
1989
The factorization theorem for paracompact \(\Sigma\)-spaces. Zbl 0709.54022
Charalambous, M. G.
1
1988
Semicompactness and dimension of increments. Zbl 0592.54035
Charalambous, M. G.
1
1986
Spaces with noncoinciding dimensions. Zbl 0592.54033
Charalambous, M. G.
4
1985
The dimension of inverse limit and N-compact spaces. Zbl 0489.54033
Charalambous, M. G.
5
1982
Inductive dimension and inverse sequences of compact spaces. Zbl 0451.54029
Charalambous, M. G.
2
1981
An example concerning inverse limit sequences of normal spaces. Zbl 0451.54028
Charalambous, M. G.
3
1980
Compactifications with countable remainder. Zbl 0439.54025
Charalambous, M. G.
1
1980
A note on the dimension of products. Zbl 0371.54055
Charalambous, M. G.
1
1977
The dimension of inverse limits. Zbl 0348.54029
Charalambous, M. G.
8
1976
Spaces with increment of dimension n. Zbl 0341.54045
Charalambous, M. G.
7
1976
Two new inductive dimension functions for topological spaces. Zbl 0332.54028
Charalambous, M. G.
6
1976
Axiomatic characterisations of dimension. Zbl 0329.54033
Charalambous, M. G.
1
1976
A new covering dimension function for uniform spaces. Zbl 0306.54048
Charalambous, M. G.
14
1975
Inductive dimension theory for uniform spaces. Zbl 0268.54032
Charalambous, M. G.
2
1975
Dimension theory for \(\sigma\)-frames. Zbl 0281.54018
Charalambous, M. G.
17
1974

Citations by Year