×

zbMATH — the first resource for mathematics

Adzhemyan, Loran Ts.

Compute Distance To:
Author ID: adzhemyan.loran-ts Recent zbMATH articles by "Adzhemyan, Loran Ts."
Published as: Adzhemyan, L. T.; Adzhemyan, L. Ts; Adzhemyan, L. Ts.; Adzhemyan, Loran Ts.
External Links: Wikidata · ORCID
Documents Indexed: 41 Publications since 1974, including 1 Book

Publications by Year

Citations contained in zbMATH Open

25 Publications have been cited 85 times in 55 Documents Cited by Year
The field theoretic renormalization group in fully developed turbulence. Transl. from the Russian by P. Millard. Zbl 0956.76002
Antonov, N. V.; Adzhemyan, L. Ts.; Vasiliev, A. N.
22
1999
Renormalization-group approach in the theory of turbulence: The dimensions of composite operators. Zbl 0556.76043
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Pis’mak, Yu. M.
11
1983
Renormalization-group approach to the stochastic Navier-Stokes equation: two-loop approximation. Zbl 1073.76046
Adzhemyan, L. Ts.; Antonov, N. V.; Kompaniets, M. V.; Vasil’ev, A. N.
6
2003
Composite operators, operator expansion, and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to Kolmogorov scaling. Zbl 0857.76038
Adzhemyan, L. Ts.; Antonov, N. V.; Kim, T. L.
6
1994
Renormalization-group approach to the theory of turbulence: Inclusion of a passive admixture. Zbl 0556.76042
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Gnatich, M.
6
1984
Renormalization group and the \(\varepsilon\)-expansion: representation of the \(\beta\)-function and anomalous dimensions by nonsingular integrals. Zbl 1274.81167
Adzhemyan, L. Ts.; Kompaniets, M. V.
4
2011
Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion. Zbl 0966.76033
Adzhemyan, L. Ts.; Antonov, N. V.; Vasil’ev, A. N.
3
1999
Renormalization group in turbulence theory: Exactly solvable Heisenberg model. Zbl 0976.76518
Adzhemyan, L. Ts.; Antonov, N. V.
3
1998
Renormalization-group approach in the theory of turbulence: Renormalization and critical dimensions of the composite operators of the energy-momentum tensor. Zbl 0701.76054
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Gnatich, M.
3
1988
Six-loop \(\epsilon\) expansion study of three-dimensional \(n\)-vector model with cubic anisotropy. Zbl 1409.81071
Adzhemyan, Loran Ts.; Ivanova, Ella V.; Kompaniets, Mikhail V.; Kudlis, Andrey; Sokolov, Aleksandr I.
2
2019
Representation of the \(\beta\)-function and anomalous dimensions by nonsingular integrals: proof of the main relation. Zbl 1286.81144
Adzhemyan, L. Ts.; Kompaniets, M. V.; Novikov, S. V.; Sazonov, V. K.
2
2013
Renormalization group in the infinite-dimensional turbulence: Third-order results. Zbl 1155.82013
Adzhemyan, L. Ts; Antonov, N. V.; Gol’din, P. B.; Kim, T. L.; Kompaniets, M. V.
2
2008
\(H\)-model of critical dynamics: Two-loop calculations of RG functions and critical indices. Zbl 0991.81078
Adzhemyan, L. Ts.; Vasiliev, A. N.; Kabrits, Yu. S.; Kompaniets, M. V.
2
1999
Renormalization group approach to the problem of the effect of compressibility on the spectral properties of developed turbulence. Zbl 0857.76039
Adzhemyan, L. Ts.; Nalimov, M. Yu.; Stepanova, M. M.
2
1995
Representation of renormalization group functions by nonsingular integrals in a model of the critical dynamics of ferromagnets: the fourth order of the \(\epsilon\)-expansion. Zbl 1401.82050
Adzhemyan, L. Ts.; Vorob’eva, S. E.; Ivanova, E. V.; Kompaniets, M. V.
1
2018
Diagram reduction in problem of critical dynamics of ferromagnets: 4-loop approximation. Zbl 1390.82067
Adzhemyan, L. Ts; Ivanova, E. V.; Kompaniets, M. V.; Vorobyeva, S. Ye
1
2018
Representation of the \(\beta\)-function and anomalous dimensions by nonsingular integrals in models of critical dynamics. Zbl 1336.81063
Adzhemyan, Loran Ts.; Vorob’eva, S. E.; Kompaniets, M. V.
1
2015
Anomalous scaling of a passive vector field in \(d\) dimensions: higher order structure functions. Zbl 1264.82054
Adzhemyan, L. Ts.; Antonov, N. V.; Gol’din, P. B.; Kompaniets, M. V.
1
2013
Improved \(\varepsilon \) expansion in the theory of turbulence: summation of nearest singularities by inclusion of an infrared irrelevant operator. Zbl 1188.76219
Adzhemyan, L. T.; Hnatich, M.; Honkonen, J.
1
2010
Renormalization-group study of correlation functions and composite operators in the stochastic magnetohydrodynamic model. Zbl 0948.76638
Adzhemyan, L. Ts.; Volchenkov, D. Yu.; Nalimov, M. Yu.
1
1996
The problem of justifying Kolmogorov’s conjectures in the stochastic theory of turbulence. Zbl 0899.76197
Adzhemyan, L. Ts.; Antonov, N. V.; Vasiliev, A. N.; Perekalin, M. M.
1
1995
Quantum-field renormalization group in the theory of turbulence: Magnetohydrodynamics. Zbl 0637.76049
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Gnatich, M.
1
1985
Renormalization group approach in the turbulence theory: Dimensions of composite operators. Zbl 0524.76067
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Pis’mak, Yu. M.
1
1983
Nonlinear generalization of Mori’s method of projection operators. Zbl 0325.76010
Adzhemyan, L. Ts.; Kuni, F. M.; Novozhilova, T. Yu.
1
1975
Method of Bogolyubov’s kinetic equation in nonlinear statistical hydrodynamics. Zbl 0306.76056
Adzhemyan, L. Ts.; Kuni, F. M.; Novozhilova, T. Yu.
1
1975
Six-loop \(\epsilon\) expansion study of three-dimensional \(n\)-vector model with cubic anisotropy. Zbl 1409.81071
Adzhemyan, Loran Ts.; Ivanova, Ella V.; Kompaniets, Mikhail V.; Kudlis, Andrey; Sokolov, Aleksandr I.
2
2019
Representation of renormalization group functions by nonsingular integrals in a model of the critical dynamics of ferromagnets: the fourth order of the \(\epsilon\)-expansion. Zbl 1401.82050
Adzhemyan, L. Ts.; Vorob’eva, S. E.; Ivanova, E. V.; Kompaniets, M. V.
1
2018
Diagram reduction in problem of critical dynamics of ferromagnets: 4-loop approximation. Zbl 1390.82067
Adzhemyan, L. Ts; Ivanova, E. V.; Kompaniets, M. V.; Vorobyeva, S. Ye
1
2018
Representation of the \(\beta\)-function and anomalous dimensions by nonsingular integrals in models of critical dynamics. Zbl 1336.81063
Adzhemyan, Loran Ts.; Vorob’eva, S. E.; Kompaniets, M. V.
1
2015
Representation of the \(\beta\)-function and anomalous dimensions by nonsingular integrals: proof of the main relation. Zbl 1286.81144
Adzhemyan, L. Ts.; Kompaniets, M. V.; Novikov, S. V.; Sazonov, V. K.
2
2013
Anomalous scaling of a passive vector field in \(d\) dimensions: higher order structure functions. Zbl 1264.82054
Adzhemyan, L. Ts.; Antonov, N. V.; Gol’din, P. B.; Kompaniets, M. V.
1
2013
Renormalization group and the \(\varepsilon\)-expansion: representation of the \(\beta\)-function and anomalous dimensions by nonsingular integrals. Zbl 1274.81167
Adzhemyan, L. Ts.; Kompaniets, M. V.
4
2011
Improved \(\varepsilon \) expansion in the theory of turbulence: summation of nearest singularities by inclusion of an infrared irrelevant operator. Zbl 1188.76219
Adzhemyan, L. T.; Hnatich, M.; Honkonen, J.
1
2010
Renormalization group in the infinite-dimensional turbulence: Third-order results. Zbl 1155.82013
Adzhemyan, L. Ts; Antonov, N. V.; Gol’din, P. B.; Kim, T. L.; Kompaniets, M. V.
2
2008
Renormalization-group approach to the stochastic Navier-Stokes equation: two-loop approximation. Zbl 1073.76046
Adzhemyan, L. Ts.; Antonov, N. V.; Kompaniets, M. V.; Vasil’ev, A. N.
6
2003
The field theoretic renormalization group in fully developed turbulence. Transl. from the Russian by P. Millard. Zbl 0956.76002
Antonov, N. V.; Adzhemyan, L. Ts.; Vasiliev, A. N.
22
1999
Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion. Zbl 0966.76033
Adzhemyan, L. Ts.; Antonov, N. V.; Vasil’ev, A. N.
3
1999
\(H\)-model of critical dynamics: Two-loop calculations of RG functions and critical indices. Zbl 0991.81078
Adzhemyan, L. Ts.; Vasiliev, A. N.; Kabrits, Yu. S.; Kompaniets, M. V.
2
1999
Renormalization group in turbulence theory: Exactly solvable Heisenberg model. Zbl 0976.76518
Adzhemyan, L. Ts.; Antonov, N. V.
3
1998
Renormalization-group study of correlation functions and composite operators in the stochastic magnetohydrodynamic model. Zbl 0948.76638
Adzhemyan, L. Ts.; Volchenkov, D. Yu.; Nalimov, M. Yu.
1
1996
Renormalization group approach to the problem of the effect of compressibility on the spectral properties of developed turbulence. Zbl 0857.76039
Adzhemyan, L. Ts.; Nalimov, M. Yu.; Stepanova, M. M.
2
1995
The problem of justifying Kolmogorov’s conjectures in the stochastic theory of turbulence. Zbl 0899.76197
Adzhemyan, L. Ts.; Antonov, N. V.; Vasiliev, A. N.; Perekalin, M. M.
1
1995
Composite operators, operator expansion, and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to Kolmogorov scaling. Zbl 0857.76038
Adzhemyan, L. Ts.; Antonov, N. V.; Kim, T. L.
6
1994
Renormalization-group approach in the theory of turbulence: Renormalization and critical dimensions of the composite operators of the energy-momentum tensor. Zbl 0701.76054
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Gnatich, M.
3
1988
Quantum-field renormalization group in the theory of turbulence: Magnetohydrodynamics. Zbl 0637.76049
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Gnatich, M.
1
1985
Renormalization-group approach to the theory of turbulence: Inclusion of a passive admixture. Zbl 0556.76042
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Gnatich, M.
6
1984
Renormalization-group approach in the theory of turbulence: The dimensions of composite operators. Zbl 0556.76043
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Pis’mak, Yu. M.
11
1983
Renormalization group approach in the turbulence theory: Dimensions of composite operators. Zbl 0524.76067
Adzhemyan, L. Ts.; Vasil’ev, A. N.; Pis’mak, Yu. M.
1
1983
Nonlinear generalization of Mori’s method of projection operators. Zbl 0325.76010
Adzhemyan, L. Ts.; Kuni, F. M.; Novozhilova, T. Yu.
1
1975
Method of Bogolyubov’s kinetic equation in nonlinear statistical hydrodynamics. Zbl 0306.76056
Adzhemyan, L. Ts.; Kuni, F. M.; Novozhilova, T. Yu.
1
1975

Citations by Year

Wikidata Timeline

The data are displayed as stored in Wikidata under a Creative Commons CC0 License. Updates and corrections should be made in Wikidata.