×

zbMATH — the first resource for mathematics

Parasyuk, Igor O.

Compute Distance To:
Author ID: parasyuk.igor-o Recent zbMATH articles by "Parasyuk, Igor O."
Published as: Parasyuk, I.; Parasyuk, I. O.; Parasyuk, Igor; Parasyuk, Igor O.
External Links: MGP · Wikidata · ORCID
Documents Indexed: 75 Publications since 1973, including 1 Book

Publications by Year

Citations contained in zbMATH

26 Publications have been cited 81 times in 64 Documents Cited by Year
Conservation of quasi-periodic motions of reversible multifrequency systems. Zbl 0502.34026
Parasyuk, I. O.
16
1982
Differential equations. 2nd revised ed. Zbl 1330.34005
Samoilenko, A. M.; Perestyuk, M. O.; Parasyuk, I. O.
10
2003
Generalized and classical almost periodic solutions of Lagrangian systems. Zbl 1141.37350
Zakharin, Sergei F.; Parasyuk, Igor O.
8
1999
On preservation of invariant tori of Hamiltonian systems. Zbl 0587.58019
Parasyuk, I. O.
7
1984
Conservation of multidimensional invariant tori of Hamiltonian systems. Zbl 0561.58017
Parasyuk, I. O.
5
1984
Variational approach for weak quasiperiodic solutions of quasiperiodically excited Lagrangian systems on Riemannian manifolds. Zbl 1260.37030
Parasyuk, Igor; Rustamova, Anna
3
2012
Bifurcation of a Whitney-smooth family of coisotropic invariant tori of a Hamiltonian system under small deformation of a symplectic structure. Zbl 0995.37047
Kubichka, A. A.; Parasyuk, I. O.
3
2001
On smoothness of generalized quasiperiodic solutions of Lagrangian systems on Riemannian manifolds of nonpositive curvature. Zbl 1006.37036
Zakharin, S. F.; Parasyuk, I. O.
3
1999
Coisotropic invariant tori of Hamiltonian systems of the quasiclassical theory of motion of a conduction electron. Zbl 0706.58062
Parasyuk, I. O.
3
1990
Zones of instability of the Schrödinger equation with a smooth quasiperiodic potential. Zbl 0435.34042
Parasyuk, I. O.
3
1978
Dynamical bifurcation of multifrequency oscillations in a fast-slow system. Zbl 1376.34045
Samoilenko, A. M.; Parasyuk, I. O.; Repeta, B. V.
2
2015
Integral representation of solutions to boundary-value problems on the half-line for linear ODEs with singularity of the first kind. Zbl 1172.34016
Horishna, Yulia; Parasyuk, Igor; Protsak, Lyudmyla
2
2008
Reduction and coisotropic invariant tori of Hamiltonian systems with non-Poisson commutative symmetries. II. Zbl 0841.58026
Parasyuk, I. O.
2
1994
Variables of the action-angle type on symplectic manifolds stratified by coisotropic tori. Zbl 0813.58023
Parasyuk, I. O.
2
1993
Hyperbolic quasiperiodic solutions of U-monotone systems on Riemannian manifolds. Zbl 1428.34063
Parasyuk, Igor O.
1
2019
Quasiperiodic extremals of nonautonomous Lagrangian systems on Riemannian manifolds. Zbl 1376.37109
Parasyuk, I. O.
1
2015
Lipschitz invariant tori of indefinite-monotone systems. Zbl 1267.37063
Samoilenko, A. M.; Parasyuk, I. O.; Lahoda, V. A.
1
2012
Estimate for the number of perturbed ultrasubharmonics of a system with one and a half degrees of freedom close to a Hamiltonian system. Zbl 1336.37051
Vakal, Yu. E.; Parasyuk, I. O.
1
2011
Existence of \(V\)-bounded solutions for non-autonomous nonlinear systems via the Ważewski topological principle. Zbl 1289.34104
Lagoda, Volodymyr; Parasyuk, Igor
1
2010
A theorem on perturbation of coisotropic invariant tori of locally Hamiltonian systems and its application. Zbl 1107.37050
Lovejkin, Yu. V.; Parasyuk, I. O.
1
2005
Substantiation of the Galerkin’s procedure for indefinite monotone quasi-periodic systems. Zbl 1034.34052
Parasyuk, I. O.; Romanchenko, I. A.
1
2002
Bifurcation of the Cantor set of coisotropic invariant tori of the Hamiltonian system under symplectic structure perturbation. Zbl 0935.37019
Parasyuk, I. O.
1
1998
Qualitative analysis of families of bounded solutions of the nonlinear three-dimensional Schrödinger equation. Zbl 0727.35127
Parasyuk, I. O.; Fushchich, V. I.
1
1990
Non-Poissonian commutative symmetries and multidimensional invariant tori of Hamiltonian systems. Zbl 0616.58018
Parasyuk, I. O.
1
1984
On the one-dimensional Schrödinger equation with almost periodic potential. Zbl 0395.35083
Parasyuk, I. O.
1
1978
On Galerkin’s method in the perturbation theory of invariant tori. Zbl 0358.34040
Samojlenko, A. M.; Parasyuk, I. O.
1
1977
Hyperbolic quasiperiodic solutions of U-monotone systems on Riemannian manifolds. Zbl 1428.34063
Parasyuk, Igor O.
1
2019
Dynamical bifurcation of multifrequency oscillations in a fast-slow system. Zbl 1376.34045
Samoilenko, A. M.; Parasyuk, I. O.; Repeta, B. V.
2
2015
Quasiperiodic extremals of nonautonomous Lagrangian systems on Riemannian manifolds. Zbl 1376.37109
Parasyuk, I. O.
1
2015
Variational approach for weak quasiperiodic solutions of quasiperiodically excited Lagrangian systems on Riemannian manifolds. Zbl 1260.37030
Parasyuk, Igor; Rustamova, Anna
3
2012
Lipschitz invariant tori of indefinite-monotone systems. Zbl 1267.37063
Samoilenko, A. M.; Parasyuk, I. O.; Lahoda, V. A.
1
2012
Estimate for the number of perturbed ultrasubharmonics of a system with one and a half degrees of freedom close to a Hamiltonian system. Zbl 1336.37051
Vakal, Yu. E.; Parasyuk, I. O.
1
2011
Existence of \(V\)-bounded solutions for non-autonomous nonlinear systems via the Ważewski topological principle. Zbl 1289.34104
Lagoda, Volodymyr; Parasyuk, Igor
1
2010
Integral representation of solutions to boundary-value problems on the half-line for linear ODEs with singularity of the first kind. Zbl 1172.34016
Horishna, Yulia; Parasyuk, Igor; Protsak, Lyudmyla
2
2008
A theorem on perturbation of coisotropic invariant tori of locally Hamiltonian systems and its application. Zbl 1107.37050
Lovejkin, Yu. V.; Parasyuk, I. O.
1
2005
Differential equations. 2nd revised ed. Zbl 1330.34005
Samoilenko, A. M.; Perestyuk, M. O.; Parasyuk, I. O.
10
2003
Substantiation of the Galerkin’s procedure for indefinite monotone quasi-periodic systems. Zbl 1034.34052
Parasyuk, I. O.; Romanchenko, I. A.
1
2002
Bifurcation of a Whitney-smooth family of coisotropic invariant tori of a Hamiltonian system under small deformation of a symplectic structure. Zbl 0995.37047
Kubichka, A. A.; Parasyuk, I. O.
3
2001
Generalized and classical almost periodic solutions of Lagrangian systems. Zbl 1141.37350
Zakharin, Sergei F.; Parasyuk, Igor O.
8
1999
On smoothness of generalized quasiperiodic solutions of Lagrangian systems on Riemannian manifolds of nonpositive curvature. Zbl 1006.37036
Zakharin, S. F.; Parasyuk, I. O.
3
1999
Bifurcation of the Cantor set of coisotropic invariant tori of the Hamiltonian system under symplectic structure perturbation. Zbl 0935.37019
Parasyuk, I. O.
1
1998
Reduction and coisotropic invariant tori of Hamiltonian systems with non-Poisson commutative symmetries. II. Zbl 0841.58026
Parasyuk, I. O.
2
1994
Variables of the action-angle type on symplectic manifolds stratified by coisotropic tori. Zbl 0813.58023
Parasyuk, I. O.
2
1993
Coisotropic invariant tori of Hamiltonian systems of the quasiclassical theory of motion of a conduction electron. Zbl 0706.58062
Parasyuk, I. O.
3
1990
Qualitative analysis of families of bounded solutions of the nonlinear three-dimensional Schrödinger equation. Zbl 0727.35127
Parasyuk, I. O.; Fushchich, V. I.
1
1990
On preservation of invariant tori of Hamiltonian systems. Zbl 0587.58019
Parasyuk, I. O.
7
1984
Conservation of multidimensional invariant tori of Hamiltonian systems. Zbl 0561.58017
Parasyuk, I. O.
5
1984
Non-Poissonian commutative symmetries and multidimensional invariant tori of Hamiltonian systems. Zbl 0616.58018
Parasyuk, I. O.
1
1984
Conservation of quasi-periodic motions of reversible multifrequency systems. Zbl 0502.34026
Parasyuk, I. O.
16
1982
Zones of instability of the Schrödinger equation with a smooth quasiperiodic potential. Zbl 0435.34042
Parasyuk, I. O.
3
1978
On the one-dimensional Schrödinger equation with almost periodic potential. Zbl 0395.35083
Parasyuk, I. O.
1
1978
On Galerkin’s method in the perturbation theory of invariant tori. Zbl 0358.34040
Samojlenko, A. M.; Parasyuk, I. O.
1
1977

Citations by Year

Wikidata Timeline

The data are displayed as stored in Wikidata under a Creative Commons CC0 License. Updates and corrections should be made in Wikidata.