Recent zbMATH articles in MSC 33D80https://www.zbmath.org/atom/cc/33D802021-04-16T16:22:00+00:00WerkzeugVertex operators, solvable lattice models and metaplectic Whittaker functions.https://www.zbmath.org/1456.820972021-04-16T16:22:00+00:00"Brubaker, Ben"https://www.zbmath.org/authors/?q=ai:brubaker.ben"Buciumas, Valentin"https://www.zbmath.org/authors/?q=ai:buciumas.valentin"Bump, Daniel"https://www.zbmath.org/authors/?q=ai:bump.daniel"Gustafsson, Henrik P. A."https://www.zbmath.org/authors/?q=ai:gustafsson.henrik-p-aThis paper discusses two mechanisms by which the quantum groups \(U_q (\hat{\mathfrak{g}})\), for a simple Lie algebra or superalgebra \(\mathfrak{g}\), produce families of special functions with a number of interesting properties related to functional equations, branching rules and unexpected algebraic relations. The first mechanism uses solvable lattice models associated to finite-dimensional modules of \(U_q (\hat{\mathfrak{g}})\). The second mechanism uses actions of Heisenberg and Clifford algebras on a fermionic Fock space, exploiting the boson-fermion correspondence arising in connection with soliton theory, dating back to [\textit{M. Jimbo} and \textit{T. Miwa}, Publ. Res. Inst. Math. Sci. 19, 943--1001 (1983; Zbl 0557.35091)] and pushed forward by \textit{T. Lam} [Math. Res. Lett. 13, No. 2--3, 377--392 (2006; Zbl 1160.05056)] and especially by [\textit{M. Kashiwara} et al., Sel. Math., New Ser. 1, No. 4, 787--805 (1995; Zbl 0857.17013)]. These two points of view provide new insight into the theory of metaplectic Whittaker functions for the general linear group and relate them to LLT polynomials (known also as ribbon symmetric functions). The main theorem of the paper considers two solvable lattice models, named Gamma ice and Delta, and details in Section 4 their row transfer matrices. In this study, metaplectic ice models are exploited, whose partition functions are metaplectic Whittaker functions. In the process, the authors introduce new symmetric functions termed metaplectic symmetric functions and explain how they are related to Whittaker functions. It is explained that half vertex operators agree with Lam's construction, and this interpretation allows for many new identities for metaplectic symmetric and Whittaker functions, including Cauchy identities. While both metaplectic symmetric functions and LLT polynomials [\textit{A. Lascoux} et al., J. Math. Phys. 38, No. 2, 1041--1068 (1997; Zbl 0869.05068)] can be related to vertex operators on the quantum Fock space, only metaplectic symmetric functions are connected to solvable lattice models. A number of links with the existing literature is identified as well.
Reviewer: Piotr Garbaczewski (Opole)