×

On the initial stages of the densification and lithification of sediments. (English) Zbl 1397.86041

Summary: This paper presents a model that can simulate early rock-forming processes, including the influence of the initial packing of the grains on the subsequent rearrangement that occurs as a consequence of pressure-induced grain damage. The paper is concerned with the behaviour of assemblies of loose grains and the mechanics of early lithification. Consider the concept of shear-induced negative dilatancy, where any shear deformation has a tendency to produce densification even at very low pressures. As shear deformation progresses, positive dilatancy starts to contribute and at the critical state the two effects balance. This concept is encapsulated within the mathematics of the model. The model building scheme is first outlined and demonstrated using a hard particle model. Then, the concept of “self cancelling shear deformations” that contribute to the shear-volume coupling but not to the macroscopic shear deformation is explained. The structure of the hard particle model is modified to include low levels of damage at the grain contacts. A parameter that describes bonding between the grains and possible damage to those bonds is incorporated into a term that, depending on its magnitude, also accounts for frictional resistance between unbonded grains. This parameter has the potential to develop with time, increasing compressive stress, or in response to evolving chemical concentrations. Together these modifications allow densification in the short term, and the formation of sedimentary rocks in the long term, by pressure alone, to be simulated. Finally, simulations using the model are compared with experimental results on soils.

MSC:

86A60 Geological problems
86-08 Computational methods for problems pertaining to geophysics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Baker, DW; Chawla, KS; Krizek, R, Compaction fabrics of pelites: experimental consolidation of kaonlinite and implications for analysis of strain in slate, J Struct Geol, 15, 1123-1137, (1993) · doi:10.1016/0191-8141(93)90159-8
[2] Baud P, Vajdova V, Wong T (2006) Shear enhanced compaction and strain localization: inelastic deformation and constitutive modeling of four porous sandstones. J Geophys Res Solid Earth 111(B12401) 1-7. doi:10.1029/2005JB004101
[3] Bishop, JFW; Hill, R, A theory of the plastic distortion of a polycrystalline aggregate under combined streses, Philos Mag, 42, 414-427, (1951) · Zbl 0042.22705 · doi:10.1080/14786445108561065
[4] Cashman, S; Cashman, K, Cataclaisis and deformation-band formation in unconsolidated marine terrace sand, humbolt county, California, Geology, 28, 111-114, (2000) · doi:10.1130/0091-7613(2000)28<111:CADFIU>2.0.CO;2
[5] Chandler, HW, A plasticity theory without drucker’s postulate, suitable for granular materails, J Mech Phys Solids, 33, 215-226, (1985) · Zbl 0564.73091 · doi:10.1016/0022-5096(85)90012-2
[6] Chandler, HW, Homogeneous and localised deformation in granular materials: a mechanistic model, Int J Eng Sci, 28, 719-734, (1990) · doi:10.1016/0020-7225(90)90018-E
[7] Chandler, HW; Sands, CM, An optimisation structure for frictional plasticity, Proc R Soc A Math Phys Eng Sci, 463, 2005-2020, (2007) · Zbl 1347.74013 · doi:10.1098/rspa.2007.1860
[8] Chandler, HW; Sands, CM, The role of a realistic volume constraint in modelling a two dimensional granular assembly, J Mech Phys Solids, 55, 1341-1356, (2007) · Zbl 1419.74096 · doi:10.1016/j.jmps.2007.01.002
[9] Chandler, HW; Sands, CM, A graphical method for producing yield surfaces for soils, Géotechnique, 59, 683-690, (2009) · doi:10.1680/geot.8.126
[10] Chandler, HW; Sands, CM, Including friction in the mathematics of classical plasticity, Int J Numer Anal Methods Geomech, 34, 53-72, (2010) · Zbl 1273.74028 · doi:10.1002/nag.806
[11] Chupin, O; Rechenmacher, AL; Abedi, S, Finite strain analysis of nonuniform deformation inside shear bands in sands, Int J Numer Anal Methods Geomech, 36, 1651-1666, (2011) · doi:10.1002/nag.1071
[12] Cilona, A; Baud, P; Tondi, E; Agosta, F; Vinciguerra, S; Rustichelli, A; Spiers, CJ, Deformation bands in porous carbonate grainstones: field and laboratory observations, J Struct Geol, 45, 135-155, (2012)
[13] Collins, IF; Houlsby, GT, Application of thermomechanical principles to the modelling of geotechnical materials, Proc R Soc Lond Ser A Math Phys Eng Sci, 453, 1975-2001, (1997) · Zbl 0933.74045 · doi:10.1098/rspa.1997.0107
[14] Cuss, RJ; Rutter, EH; Holloway, RF, The application of critical state soil mechanics to the mechanical behaviour of porous sandstons, Int J Rock Mech Min Sci, 40, 847-862, (2003) · doi:10.1016/S1365-1609(03)00053-4
[15] Dan, G; Sultan, N; Savoye, B; Deverchere, J; Yelles, K, Quantifying the role of sandy-silty sediments in generating slope failures during earthquakes: example from the Algerian margin, Int J Earth Sci (Geol Rundsch), 98, 769-789, (2009) · doi:10.1007/s00531-008-0373-5
[16] Das, A; Buscarnera, G, Simulation of localized compaction in high-porosity calcarenite subjected to boundary constraints, Int J Rock Mech Min Sci, 71, 91-104, (2014)
[17] DiMaggio, FL; Sandler, IS, Material models for granular soil, J Eng Mech ASCE, 97, 939-950, (1971)
[18] DorMohammadi, H; Khoei, AR, A three-invariant cap model with isotropic-kinematic hardening rule and associated plasticity for granular materials, Int J Solids Struct, 45, 631-656, (2008) · Zbl 1167.74370 · doi:10.1016/j.ijsolstr.2007.08.019
[19] Ellis, S; Darby, D, A modified terzaghi consolidation factor for first-order estimation of overpressure resulting from sedimentation: review and synthesis, Math Geol, 37, 115-123, (2005) · Zbl 1101.76057 · doi:10.1007/s11004-005-8750-0
[20] Fokker, PA; Orlic, B, Semi-analytic modelling of subsidence, Math Geol, 38, 565-589, (2006) · Zbl 1112.74040 · doi:10.1007/s11004-006-9034-z
[21] Gajo, A; Muir Wood, D, A kinematic hardening constitutive model for sands: the multiaxial formulation, Int J Numer Anal Methods Geomech, 23, 925-965, (1999) · Zbl 0943.74040 · doi:10.1002/(SICI)1096-9853(19990810)23:9<925::AID-NAG19>3.0.CO;2-M
[22] Gratchev, IB; Sassa, K; Osipov, VI; Sokolov, VN, The liquefactino of clayey soils under cyclic loading, Eng Geol, 86, 70-84, (2006) · doi:10.1016/j.enggeo.2006.04.006
[23] Han, G; Dusseault, MB, Sand stress analysis around a producing wellbore with a simplified capillary model, Int J Rock Mech Min Sci, 42, 1014-1027, (2005) · doi:10.1016/j.ijrmms.2005.05.019
[24] Hermanrud, C; Venstad, JM; Cartwright, J; Rennan, L; Hermanrud, K; Bolåas, HMN, Consequences of water level drops for soft sediment deformation and vertical fluid leakage, Math Geosci, 45, 1-30, (2013) · doi:10.1007/s11004-012-9435-0
[25] Holcomb, D; Rudnicki, JW; Issen, K; Sternlof, K, Compaction localization in the Earth and the laboratory: state of the research and research directions, Acta Geotech, 2, 1-15, (2007) · doi:10.1007/s11440-007-0027-y
[26] Hunter SC (1976) Mechanics of continuous media, 2nd edn. Ellis Horwood, Chichester · Zbl 0385.73002
[27] Joer, HA; Lanier, J; Fahey, M, Deformation of granular materials due to rotation of principal axes, Géotechnique, 48, 605-619, (1998) · doi:10.1680/geot.1998.48.5.605
[28] Mair, K; Abe, S, 3d numerical simulations of fault gouge evolution during shear: grain size reduction and strain localization, Earth Planet Sci Lett, 274, 72-81, (2008) · doi:10.1016/j.epsl.2008.07.010
[29] Miura, N, A consideration on the stress-strain relation of a sand under high pressures, Proc Jpn Soc Civil Eng, 282, 127-130, (1979) · doi:10.2208/jscej1969.1979.282_127
[30] Miura, N; Marata, H; Yasufuku, N, Stress-strain characteristics of sand in a particle-crushing region, Soils Found, 24, 77-89, (1984) · doi:10.3208/sandf1972.24.77
[31] Mollema, PN; Antonellini, MA, Compaction bands: a structural anlogue for anti-mode i cracks in Eolian sandstone, Tectonophysics, 267, 209-228, (1996) · doi:10.1016/S0040-1951(96)00098-4
[32] Paterson, SR; Tobisch, OT, Pre-lithification structures, deformation mechanisms and fabric ellipsoids in slumped turbidites from the pigeon point formation California, Tectonophysics, 222, 135-149, (1993) · doi:10.1016/0040-1951(93)90045-L
[33] Pestana, JM; Whittle, AJ; Gens, A, Evaluation of a constitutive model for clays and sands: part ii Clay behaviour, Int J Numer Anal Methods Geomech, 26, 1123-1146, (2002) · Zbl 1008.74522 · doi:10.1002/nag.238
[34] Pestana, JM; Whittle, AJ; Salvati, LA, Evaluation of a constitutive model for clays and sands: part I sand behaviour, Int J Numer Anal Methods Geomech, 26, 1097-1121, (2002) · Zbl 1008.74521 · doi:10.1002/nag.237
[35] Roscoe, KH; Burland, JB; Heyman, J (ed.); Leckie, FA (ed.), On the generalised stress strain behaviour of wet Clay, 535-609, (1968), Cambridge · Zbl 0233.73047
[36] Sands, CM; Chandler, HW, Yield surfaces and flow rules for deformation of granular materials with a volume constraint, Comput Geotech, 37, 701-709, (2010) · doi:10.1016/j.compgeo.2010.04.008
[37] Sands, CM; Chandler, HW, Simulations of cyclic shearing of sand at low effective stress, Géotechnique, 61, 983-992, (2011) · doi:10.1680/geot.9.P.060
[38] Sands, CM; Chandler, HW, Simulating pressure-induced compaction by grain rearrangement, Géotech Lett, 2, 187-192, (2012) · doi:10.1680/geolett.12.00034
[39] Sands, CM; Chandler, HW, Methods for incorporating particle rearrangement into compaction using thermodynamic approaches, Contin Mech Thermodyn, 26, 183-192, (2014) · Zbl 1343.80006 · doi:10.1007/s00161-013-0293-x
[40] Sands, CM; Chandler, HW; Guz, IA, Developing elasto-plastic models without establishing any expression for the yield function, Numer Anal Methods Geomech, 35, 932-946, (2010) · Zbl 1274.74071 · doi:10.1002/nag.935
[41] Sands, CM; Brown, AR; Chandler, HW, The application of principles of soil mechanics to the modelling of pastes, Granul Mater, 13, 573-584, (2011) · doi:10.1007/s10035-011-0271-6
[42] Tsegaye AB, Benz T (2014) Plastic flow and state-dilatancy for geomaterials. Acta Geotechnica
[43] Vesic, AS; Clough, GW, Behaviour of granular materials under high stresses, J Soil Mech Found Div ASCE, 94, 661-688, (1968)
[44] Wibberly, CJ; Yielding, G; Toro, G, Recent advances in the understanding of fault zone internal structure: a review, Geol Soc Lond Spec Publ, 299, 5-33, (2008) · doi:10.1144/SP299.2
[45] Youd, TL, Compaction of sands by repeated shear straining, J Soil Mech Found Div ASCE, 98, 709-725, (1972)
[46] Yunus, Y; Vincens, E; Cambo, B, Numerical local analysis of relevant internal variables for constitutive modelling of granular materials, Int J Numer Anal Methods Geomech, 34, 1101-1123, (2010) · Zbl 1273.74061 · doi:10.1002/nag.979
[47] Zhu C, Arson C (2014) A thermo-mechanical demage model for rock stiffness during anisotropic crack opening and closure. Acta Geomtechnica
[48] Ziegler H (1983) An Introduction to thermomechanics, 2nd edn. North Holland, Amsterdam · Zbl 0531.73080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.