Mi, Yongsheng; Huang, Daiwen Well-posedness and continuity properties of the new shallow-water model with cubic nonlinearity. (English) Zbl 07332088 Ann. Mat. Pura Appl. (4) 200, No. 1, 1-34 (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{Y. Mi} and \textit{D. Huang}, Ann. Mat. Pura Appl. (4) 200, No. 1, 1--34 (2021; Zbl 07332088) Full Text: DOI
Noguera, Norman; Pastor, Ademir A system of Schrödinger equations with general quadratic-type nonlinearities. (English) Zbl 07331735 Commun. Contemp. Math. 23, No. 4, Article ID 2050023, 66 p. (2021). MSC: 35A01 35B44 35J50 35Q55 PDF BibTeX XML Cite \textit{N. Noguera} and \textit{A. Pastor}, Commun. Contemp. Math. 23, No. 4, Article ID 2050023, 66 p. (2021; Zbl 07331735) Full Text: DOI
Mosincat, Razvan; Pilod, Didier; Saut, Jean-Claude Global well-posedness and scattering for the dysthe equation in \(L^2(\mathbb{R}^2)\). (English. French summary) Zbl 07331622 J. Math. Pures Appl. (9) 149, 73-97 (2021). MSC: 35A01 35Q53 35Q60 PDF BibTeX XML Cite \textit{R. Mosincat} et al., J. Math. Pures Appl. (9) 149, 73--97 (2021; Zbl 07331622) Full Text: DOI
Koh, Youngwoo; Lee, Yoonjung; Seo, Ihyeok On the integrability of the wave propagator arising from the Liouville-von Neumann equation. (English) Zbl 07331427 Arch. Math. 116, No. 3, 345-358 (2021). MSC: 35B45 35Q40 PDF BibTeX XML Cite \textit{Y. Koh} et al., Arch. Math. 116, No. 3, 345--358 (2021; Zbl 07331427) Full Text: DOI
Cornalba, Federico; Shardlow, Tony; Zimmer, Johannes Well-posedness for a regularised inertial Dean-Kawasaki model for slender particles in several space dimensions. (English) Zbl 07330802 J. Differ. Equations 284, 253-283 (2021). MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{F. Cornalba} et al., J. Differ. Equations 284, 253--283 (2021; Zbl 07330802) Full Text: DOI
Hirayama, Hiroyuki; Kinoshita, Shinya; Okamoto, Mamoru Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations in almost critical spaces. (English) Zbl 07330751 J. Math. Anal. Appl. 499, No. 2, Article ID 125028, 29 p. (2021). MSC: 35Q55 42B37 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{H. Hirayama} et al., J. Math. Anal. Appl. 499, No. 2, Article ID 125028, 29 p. (2021; Zbl 07330751) Full Text: DOI
Li, Xue-Yang; Xiao, Ai-Guo Space-fractional diffusion equation with variable coefficients: well-posedness and Fourier pseudospectral approximation. (English) Zbl 07329959 J. Sci. Comput. 87, No. 1, Paper No. 28, 34 p. (2021). MSC: 35R11 35K20 65M12 65M70 65T40 PDF BibTeX XML Cite \textit{X.-Y. Li} and \textit{A.-G. Xiao}, J. Sci. Comput. 87, No. 1, Paper No. 28, 34 p. (2021; Zbl 07329959) Full Text: DOI
Deng, Xijun A note on blow-up criteria for a class of nonlinear dispersive wave equations with dissipation. (English) Zbl 07328623 Monatsh. Math. 194, No. 3, 503-512 (2021). MSC: 35B44 35G25 37K10 PDF BibTeX XML Cite \textit{X. Deng}, Monatsh. Math. 194, No. 3, 503--512 (2021; Zbl 07328623) Full Text: DOI
Dinh, Van Duong Random data theory for the cubic fourth-order nonlinear Schrödinger equation. (English) Zbl 07327298 Commun. Pure Appl. Anal. 20, No. 2, 651-680 (2021). MSC: 35Q55 35Q41 35A01 35A02 35R60 PDF BibTeX XML Cite \textit{V. D. Dinh}, Commun. Pure Appl. Anal. 20, No. 2, 651--680 (2021; Zbl 07327298) Full Text: DOI
Tuan, Nguyen Huy; Au, Vo Van; Xu, Runzhang Semilinear Caputo time-fractional pseudo-parabolic equations. (English) Zbl 07327296 Commun. Pure Appl. Anal. 20, No. 2, 583-621 (2021). MSC: 35R11 35B44 26A33 33E12 35B40 35K70 35K20 44A20 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Commun. Pure Appl. Anal. 20, No. 2, 583--621 (2021; Zbl 07327296) Full Text: DOI
Fakih, Hussein; Mghames, Ragheb; Nasreddine, Noura On the Cahn-Hilliard equation with mass source for biological applications. (English) Zbl 07327291 Commun. Pure Appl. Anal. 20, No. 2, 495-510 (2021). MSC: 35Q92 92C37 65M60 65M06 65N30 65M12 65M15 35B35 35J60 35A01 35A02 68U05 PDF BibTeX XML Cite \textit{H. Fakih} et al., Commun. Pure Appl. Anal. 20, No. 2, 495--510 (2021; Zbl 07327291) Full Text: DOI
Zhu, Kaixuan; Xie, Yongqin; Zhou, Feng; Zhou, Qiyuan Pullback attractors for \(p\)-Laplacian equations with delays. (English) Zbl 07326362 J. Math. Phys. 62, No. 2, 022702, 17 p. (2021). MSC: 35J92 35J25 PDF BibTeX XML Cite \textit{K. Zhu} et al., J. Math. Phys. 62, No. 2, 022702, 17 p. (2021; Zbl 07326362) Full Text: DOI
Ramos, A. J. A.; Almeida Júnior, D. S.; Freitas, M. M.; Noé, A. S.; Santos, M. J. Dos Stabilization of swelling porous elastic soils with fluid saturation and delay time terms. (English) Zbl 07326347 J. Math. Phys. 62, No. 2, 021507, 10 p. (2021). MSC: 74L10 74F10 76S05 35Q74 PDF BibTeX XML Cite \textit{A. J. A. Ramos} et al., J. Math. Phys. 62, No. 2, 021507, 10 p. (2021; Zbl 07326347) Full Text: DOI
Hu, Jingwei; Qi, Kunlun; Yang, Tong A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation. (English) Zbl 07326330 SIAM J. Numer. Anal. 59, No. 2, 613-633 (2021). MSC: 35Q20 65M12 65M70 45G10 PDF BibTeX XML Cite \textit{J. Hu} et al., SIAM J. Numer. Anal. 59, No. 2, 613--633 (2021; Zbl 07326330) Full Text: DOI
Abbassi, A.; Allalou, C.; Oulha, Y. Well-posedness and stability for the viscous primitive equations of geophysics in critical Fourier-Besov-Morrey spaces. (English) Zbl 07326311 Hammouch, Zakia (ed.) et al., Nonlinear analysis: problems, applications and computational methods. Proceedings of the 6th international congress of the Moroccan Society of Applied Mathematics, Beni-Mellal, Morocco, November 7–9, 2019. Cham: Springer (ISBN 978-3-030-62298-5/pbk; 978-3-030-62299-2/ebook). Lecture Notes in Networks and Systems 168, 123-140 (2021). MSC: 35Q86 49 90 34 PDF BibTeX XML Cite \textit{A. Abbassi} et al., Lect. Notes Netw. Syst. 168, 123--140 (2021; Zbl 07326311) Full Text: DOI
Danchin, Raphaël; Tan, Jin On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces. (English) Zbl 07324453 Commun. Partial Differ. Equations 46, No. 1, 31-65 (2021). MSC: 35Q35 76D03 86A10 PDF BibTeX XML Cite \textit{R. Danchin} and \textit{J. Tan}, Commun. Partial Differ. Equations 46, No. 1, 31--65 (2021; Zbl 07324453) Full Text: DOI
Bao, Ngoc Tran; Caraballo, Tomás; Tuan, Nguyen Huy; Zhou, Yong Existence and regularity results for terminal value problem for nonlinear fractional wave equations. (English) Zbl 07324157 Nonlinearity 34, No. 3, 1448-1502 (2021). MSC: 35R11 35L20 26A33 35B65 PDF BibTeX XML Cite \textit{N. T. Bao} et al., Nonlinearity 34, No. 3, 1448--1502 (2021; Zbl 07324157) Full Text: DOI
Ramos, A. J. A.; Aouadi, M.; Almeida Júnior, D. S.; Freitas, M. M.; Araújo, M. L. A new stabilization scenario for Timoshenko systems with thermo-diffusion effects in second spectrum perspective. (English) Zbl 07322650 Arch. Math. 116, No. 2, 203-219 (2021). MSC: 74K10 74F05 74H20 74H25 74H40 35Q74 PDF BibTeX XML Cite \textit{A. J. A. Ramos} et al., Arch. Math. 116, No. 2, 203--219 (2021; Zbl 07322650) Full Text: DOI
Chaichenets, L.; Hundertmark, D.; Kunstmann, P.; Pattakos, N. On the global well-posedness of the quadratic NLS on \(H^1(\mathbb{T}) + L^2(\mathbb{R})\). (English) Zbl 07321626 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 11, 29 p. (2021). MSC: 35Q55 35A01 35A02 PDF BibTeX XML Cite \textit{L. Chaichenets} et al., NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 11, 29 p. (2021; Zbl 07321626) Full Text: DOI
Li, Hai-Liang; Shou, Ling-Yun Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system. (English) Zbl 07319451 J. Differ. Equations 280, 841-890 (2021). MSC: 35Q 76N 35Q30 35Q83 35Q70 76N10 35B40 PDF BibTeX XML Cite \textit{H.-L. Li} and \textit{L.-Y. Shou}, J. Differ. Equations 280, 841--890 (2021; Zbl 07319451) Full Text: DOI
Yue, Haitian Global well-posedness for the energy-critical focusing nonlinear Schrödinger equation on \(\mathbb{T}^4\). (English) Zbl 07319449 J. Differ. Equations 280, 754-804 (2021). MSC: 35Q55 49K40 35B30 35B40 35B44 35R01 PDF BibTeX XML Cite \textit{H. Yue}, J. Differ. Equations 280, 754--804 (2021; Zbl 07319449) Full Text: DOI
Kim, Jungkwon; Lee, Yoonjung; Seo, Ihyeok On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case. (English) Zbl 07319430 J. Differ. Equations 280, 179-202 (2021). MSC: 35Q55 35A01 35B45 35K15 35B45 35J10 PDF BibTeX XML Cite \textit{J. Kim} et al., J. Differ. Equations 280, 179--202 (2021; Zbl 07319430) Full Text: DOI
Riaño, Oscar G. Well-posedness for a two-dimensional dispersive model arising from capillary-gravity flows. (English) Zbl 07319426 J. Differ. Equations 280, 1-65 (2021). MSC: 35Q35 76B15 76B45 35A01 35A02 PDF BibTeX XML Cite \textit{O. G. Riaño}, J. Differ. Equations 280, 1--65 (2021; Zbl 07319426) Full Text: DOI
Ning, Ning; Wu, Jing Well-posedness and stability analysis of two classes of generalized stochastic volatility models. (English) Zbl 07319375 SIAM J. Financ. Math. 12, No. 1, 79-109 (2021). MSC: 91G20 60G20 PDF BibTeX XML Cite \textit{N. Ning} and \textit{J. Wu}, SIAM J. Financ. Math. 12, No. 1, 79--109 (2021; Zbl 07319375) Full Text: DOI
Fehrman, Benjamin; Gess, Benjamin Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise. (English. French summary) Zbl 07319315 J. Math. Pures Appl. (9) 148, 221-266 (2021). MSC: 37L55 60H15 60L50 PDF BibTeX XML Cite \textit{B. Fehrman} and \textit{B. Gess}, J. Math. Pures Appl. (9) 148, 221--266 (2021; Zbl 07319315) Full Text: DOI
Tanaka, Tomoyuki Local well-posedness for fourth order Benjamin-Ono type equations. (English) Zbl 07318442 J. Math. Anal. Appl. 498, No. 1, Article ID 124928, 33 p. (2021). MSC: 35Q 76B PDF BibTeX XML Cite \textit{T. Tanaka}, J. Math. Anal. Appl. 498, No. 1, Article ID 124928, 33 p. (2021; Zbl 07318442) Full Text: DOI
Acevedo, Ramiro; Gómez, Christian; López-Rodríguez, Bibiana Well-posedness of a family of degenerate parabolic mixed equations. (English) Zbl 07318434 J. Math. Anal. Appl. 498, No. 1, Article ID 124903, 22 p. (2021). MSC: 78M30 76M30 78M25 76D07 35K65 35M10 35A01 35A02 65J08 PDF BibTeX XML Cite \textit{R. Acevedo} et al., J. Math. Anal. Appl. 498, No. 1, Article ID 124903, 22 p. (2021; Zbl 07318434) Full Text: DOI
Figueira, Renata O.; Himonas, A. Alexandrou Lower bounds on the radius of analyticity for a system of modified KdV equations. (English) Zbl 07317502 J. Math. Anal. Appl. 497, No. 2, Article ID 124917, 17 p. (2021). MSC: 35Q53 30 PDF BibTeX XML Cite \textit{R. O. Figueira} and \textit{A. A. Himonas}, J. Math. Anal. Appl. 497, No. 2, Article ID 124917, 17 p. (2021; Zbl 07317502) Full Text: DOI
Gharibi, Zeinab; Dehghan, Mehdi Convergence analysis of weak Galerkin flux-based mixed finite element method for solving singularly perturbed convection-diffusion-reaction problem. (English) Zbl 07316850 Appl. Numer. Math. 163, 303-316 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65M12 35B25 35A01 35A02 76U05 PDF BibTeX XML Cite \textit{Z. Gharibi} and \textit{M. Dehghan}, Appl. Numer. Math. 163, 303--316 (2021; Zbl 07316850) Full Text: DOI
Deteix, J.; Ndetchoua Kouamo, G. L.; Yakoubi, D. Well-posedness of a semi-discrete Navier-Stokes/Allen-Cahn model. (English) Zbl 07316434 J. Math. Anal. Appl. 496, No. 2, Article ID 124816, 27 p. (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{J. Deteix} et al., J. Math. Anal. Appl. 496, No. 2, Article ID 124816, 27 p. (2021; Zbl 07316434) Full Text: DOI
Stechlinski, Peter; Barton, Paul I. Nonsmooth Hessenberg differential-algebraic equations. (English) Zbl 07315387 J. Math. Anal. Appl. 495, No. 1, Article ID 124721, 33 p. (2021). MSC: 34A09 PDF BibTeX XML Cite \textit{P. Stechlinski} and \textit{P. I. Barton}, J. Math. Anal. Appl. 495, No. 1, Article ID 124721, 33 p. (2021; Zbl 07315387) Full Text: DOI
Jin, Guanghui; Moon, Bora Local and global solutions to the \(O(3)\)-sigma model with the Maxwell and the Chern-Simons gauges in \(\mathbb{R}^{1 + 1} \). (English) Zbl 07315381 J. Math. Anal. Appl. 495, No. 1, Article ID 124715, 17 p. (2021). MSC: 35Q 83 PDF BibTeX XML Cite \textit{G. Jin} and \textit{B. Moon}, J. Math. Anal. Appl. 495, No. 1, Article ID 124715, 17 p. (2021; Zbl 07315381) Full Text: DOI
Pecher, Hartmut Local well-posedness for the Klein-Gordon-Zakharov system in 3D. (English) Zbl 07314929 Discrete Contin. Dyn. Syst. 41, No. 4, 1707-1736 (2021). MSC: 35Q55 35Q41 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Pecher}, Discrete Contin. Dyn. Syst. 41, No. 4, 1707--1736 (2021; Zbl 07314929) Full Text: DOI
You, Bo Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation. (English) Zbl 07314923 Discrete Contin. Dyn. Syst. 41, No. 4, 1579-1604 (2021). MSC: 35Q86 86A05 76U60 35R60 37L55 60H30 35B41 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{B. You}, Discrete Contin. Dyn. Syst. 41, No. 4, 1579--1604 (2021; Zbl 07314923) Full Text: DOI
Andreianov, Boris; Maliki, Mohamed On classes of well-posedness for quasilinear diffusion equations in the whole space. (English) Zbl 07314570 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 505-531 (2021). MSC: 35J62 35J70 35A01 35A02 PDF BibTeX XML Cite \textit{B. Andreianov} and \textit{M. Maliki}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 505--531 (2021; Zbl 07314570) Full Text: DOI
Zhu, Neng; Liu, Zhengrong; Wang, Fang; Zhao, Kun Asymptotic dynamics of a system of conservation laws from chemotaxis. (English) Zbl 07314365 Discrete Contin. Dyn. Syst. 41, No. 2, 813-847 (2021). MSC: 35B40 35K57 35Q92 92C17 PDF BibTeX XML Cite \textit{N. Zhu} et al., Discrete Contin. Dyn. Syst. 41, No. 2, 813--847 (2021; Zbl 07314365) Full Text: DOI
Dreyfuss, Pierre; Houamed, Haroune Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation. (English) Zbl 07312802 J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{P. Dreyfuss} and \textit{H. Houamed}, J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021; Zbl 07312802) Full Text: DOI
Cheng, Xing; Zhao, Zehua; Zheng, Jiqiang Well-posedness for energy-critical nonlinear Schrödinger equation on waveguide manifold. (English) Zbl 07310674 J. Math. Anal. Appl. 494, No. 2, Article ID 124654, 14 p. (2021). MSC: 35Q55 78A50 35A01 35A02 PDF BibTeX XML Cite \textit{X. Cheng} et al., J. Math. Anal. Appl. 494, No. 2, Article ID 124654, 14 p. (2021; Zbl 07310674) Full Text: DOI
Wang, Chunpeng; Xin, Zhouping Regular subsonic-sonic flows in general nozzles. (English) Zbl 07309942 Adv. Math. 380, Article ID 107578, 57 p. (2021). MSC: 35Q31 35J70 76N10 76G25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{C. Wang} and \textit{Z. Xin}, Adv. Math. 380, Article ID 107578, 57 p. (2021; Zbl 07309942) Full Text: DOI
Nogueira, Marcelo; Panthee, Mahendra Local and global well-posedness for a quadratic Schrödinger system on Zoll manifolds. (English) Zbl 07309684 J. Math. Anal. Appl. 494, No. 1, Article ID 124574, 36 p. (2021). MSC: 35Q55 35A01 35A02 PDF BibTeX XML Cite \textit{M. Nogueira} and \textit{M. Panthee}, J. Math. Anal. Appl. 494, No. 1, Article ID 124574, 36 p. (2021; Zbl 07309684) Full Text: DOI
Zhou, Yong; He, Jia Wei Well-posedness and regularity for fractional damped wave equations. (English) Zbl 07308740 Monatsh. Math. 194, No. 2, 425-458 (2021). MSC: 35R11 35L20 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. W. He}, Monatsh. Math. 194, No. 2, 425--458 (2021; Zbl 07308740) Full Text: DOI
Kinoshita, Shinya Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D. (English) Zbl 07307589 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 451-505 (2021). MSC: 35Q53 35A01 PDF BibTeX XML Cite \textit{S. Kinoshita}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 451--505 (2021; Zbl 07307589) Full Text: DOI
Chae, Dongho; Wolf, Jörg The Euler equations in a critical case of the generalized Campanato space. (English) Zbl 07307581 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 201-241 (2021). MSC: 35Q31 76B03 35B44 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 201--241 (2021; Zbl 07307581) Full Text: DOI
Wang, Xiaohui Compressible subsonic cavity flow in a nozzle. (English) Zbl 07306517 J. Math. Phys. 62, No. 1, 011505, 27 p. (2021). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 76N10 76G25 35Q31 PDF BibTeX XML Cite \textit{X. Wang}, J. Math. Phys. 62, No. 1, 011505, 27 p. (2021; Zbl 07306517) Full Text: DOI
Gao, Yili; Xue, Jun Local well-posedness and small data scattering for energy super-critical nonlinear wave equations. (English) Zbl 07305514 Appl. Anal. 100, No. 3, 663-674 (2021). MSC: 35L71 35L15 35B40 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{J. Xue}, Appl. Anal. 100, No. 3, 663--674 (2021; Zbl 07305514) Full Text: DOI
Hung, Nguyen Van Generalized Levitin-Polyak well-posedness for controlled systems of FMQHI-fuzzy mixed quasi-hemivariational inequalities of Minty type. (English) Zbl 07305164 J. Comput. Appl. Math. 386, Article ID 113263, 12 p. (2021). MSC: 47J20 49J40 90C29 90C31 PDF BibTeX XML Cite \textit{N. Van Hung}, J. Comput. Appl. Math. 386, Article ID 113263, 12 p. (2021; Zbl 07305164) Full Text: DOI
Burachik, Regina S.; Dao, Minh N.; Lindstrom, Scott B. The generalized Bregman distance. (English) Zbl 07304310 SIAM J. Optim. 31, No. 1, 404-424 (2021). MSC: 90C25 49K40 47H05 PDF BibTeX XML Cite \textit{R. S. Burachik} et al., SIAM J. Optim. 31, No. 1, 404--424 (2021; Zbl 07304310) Full Text: DOI
Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo On the nonlinear Dirac equation on noncompact metric graphs. (English) Zbl 07303711 J. Differ. Equations 278, 326-357 (2021). MSC: 35Q41 35Q55 35B25 35R02 81Q35 47J07 58E07 47A10 PDF BibTeX XML Cite \textit{W. Borrelli} et al., J. Differ. Equations 278, 326--357 (2021; Zbl 07303711) Full Text: DOI
Tuan, Nguyen Huy; Caraballo, Tomás On initial and terminal value problems for fractional nonclassical diffusion equations. (English) Zbl 07301324 Proc. Am. Math. Soc. 149, No. 1, 143-161 (2021). MSC: 35R11 35K70 26A33 35B65 35B45 35R25 PDF BibTeX XML Cite \textit{N. H. Tuan} and \textit{T. Caraballo}, Proc. Am. Math. Soc. 149, No. 1, 143--161 (2021; Zbl 07301324) Full Text: DOI
Bae, Myoungjean; Duan, Ben; Xiao, Jingjing; Xie, Chunjing Structural stability of supersonic solutions to the Euler-Poisson system. (English) Zbl 07300722 Arch. Ration. Mech. Anal. 239, No. 2, 679-731 (2021). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35L65 76W05 35Q35 35L04 35B35 35Q31 PDF BibTeX XML Cite \textit{M. Bae} et al., Arch. Ration. Mech. Anal. 239, No. 2, 679--731 (2021; Zbl 07300722) Full Text: DOI
Ri, Myong-Hwan Global well-posedness for inhomogeneous Navier-Stokes equations in endpoint critical Besov spaces. (English) Zbl 07299352 J. Math. Fluid Mech. 23, No. 1, Paper No. 16, 28 p. (2021). MSC: 35Q30 35B35 76D03 76D07 76D05 PDF BibTeX XML Cite \textit{M.-H. Ri}, J. Math. Fluid Mech. 23, No. 1, Paper No. 16, 28 p. (2021; Zbl 07299352) Full Text: DOI
Ren, Xiaoxia; Xiang, Zhaoyin Low regularity well-posedness for the 3D viscous non-resistive MHD system with internal surface wave. (English) Zbl 07299350 J. Math. Fluid Mech. 23, No. 1, Paper No. 14, 34 p. (2021). MSC: 35Q35 76W05 35A01 35A02 35D35 35B65 PDF BibTeX XML Cite \textit{X. Ren} and \textit{Z. Xiang}, J. Math. Fluid Mech. 23, No. 1, Paper No. 14, 34 p. (2021; Zbl 07299350) Full Text: DOI
Dalibard, Anne-Laure; Paddick, Matthew An existence result for the steady rotating Prandtl equation. (English) Zbl 1455.76047 J. Math. Fluid Mech. 23, No. 1, Paper No. 13, 27 p. (2021). MSC: 76D10 76U60 35Q35 PDF BibTeX XML Cite \textit{A.-L. Dalibard} and \textit{M. Paddick}, J. Math. Fluid Mech. 23, No. 1, Paper No. 13, 27 p. (2021; Zbl 1455.76047) Full Text: DOI
Fujii, Mikihiro Long time existence and asymptotic behavior of solutions for the 2D quasi-geostrophic equation with large dispersive forcing. (English) Zbl 1455.76201 J. Math. Fluid Mech. 23, No. 1, Paper No. 12, 19 p. (2021). MSC: 76U60 76B03 35Q30 PDF BibTeX XML Cite \textit{M. Fujii}, J. Math. Fluid Mech. 23, No. 1, Paper No. 12, 19 p. (2021; Zbl 1455.76201) Full Text: DOI
Davoli, Elisa; Scarpa, Luca; Trussardi, Lara Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms. (English) Zbl 07298823 Arch. Ration. Mech. Anal. 239, No. 1, 117-149 (2021). MSC: 76V05 76M45 35Q35 PDF BibTeX XML Cite \textit{E. Davoli} et al., Arch. Ration. Mech. Anal. 239, No. 1, 117--149 (2021; Zbl 07298823) Full Text: DOI
Kinoshita, Shinya; Schippa, Robert Loomis-Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation. (English) Zbl 07298638 J. Funct. Anal. 280, No. 6, Article ID 108904, 54 p. (2021). MSC: 35Q53 42B37 35A01 35A02 PDF BibTeX XML Cite \textit{S. Kinoshita} and \textit{R. Schippa}, J. Funct. Anal. 280, No. 6, Article ID 108904, 54 p. (2021; Zbl 07298638) Full Text: DOI
Granero-Belinchón, Rafael; Scrobogna, Stefano Well-posedness of the water-wave with viscosity problem. (English) Zbl 07297746 J. Differ. Equations 276, 96-148 (2021). MSC: 35Q35 76D05 35R35 35Q55 35A01 35A02 35L25 PDF BibTeX XML Cite \textit{R. Granero-Belinchón} and \textit{S. Scrobogna}, J. Differ. Equations 276, 96--148 (2021; Zbl 07297746) Full Text: DOI
Anco, Stephen; He, Huijun; Qiao, Zhijun Local well-posedness and blow-up for a family of \(U(1)\)-invariant peakon equations. (English) Zbl 1455.35056 J. Differ. Equations 275, 757-789 (2021). MSC: 35G25 35B44 35Q55 PDF BibTeX XML Cite \textit{S. Anco} et al., J. Differ. Equations 275, 757--789 (2021; Zbl 1455.35056) Full Text: DOI
Zhao, Zehua On scattering for the defocusing nonlinear Schrödinger equation on waveguide \(\mathbb{R}^m \times \mathbb{T}\) (when \(m = 2, 3)\). (English) Zbl 1455.35244 J. Differ. Equations 275, 598-637 (2021). Reviewer: Mohammed Kaabar (Gelugor) MSC: 35Q55 35R01 58J50 47A40 78A50 78A45 78A60 PDF BibTeX XML Cite \textit{Z. Zhao}, J. Differ. Equations 275, 598--637 (2021; Zbl 1455.35244) Full Text: DOI
Castelli, M.; Doronin, G. Modified and subcritical Zakharov-Kuznetsov equations posed on rectangles. (English) Zbl 07291349 J. Differ. Equations 275, 554-580 (2021). MSC: 35G31 35Q53 PDF BibTeX XML Cite \textit{M. Castelli} and \textit{G. Doronin}, J. Differ. Equations 275, 554--580 (2021; Zbl 07291349) Full Text: DOI
Liang, Siyu; Zhang, Ping; Zhu, Rongchan Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity. (English) Zbl 1455.35174 J. Differ. Equations 275, 473-508 (2021). MSC: 35Q30 76D05 35A01 35A02 35D35 35R60 PDF BibTeX XML Cite \textit{S. Liang} et al., J. Differ. Equations 275, 473--508 (2021; Zbl 1455.35174) Full Text: DOI
da Silva, Daniel Oliveira; Castro, Alejandro J. Global well-posedness for the nonlinear wave equation in analytic Gevrey spaces. (English) Zbl 1455.35209 J. Differ. Equations 275, 234-249 (2021). MSC: 35Q40 35L70 35A01 35A02 35B40 35L05 PDF BibTeX XML Cite \textit{D. O. da Silva} and \textit{A. J. Castro}, J. Differ. Equations 275, 234--249 (2021; Zbl 1455.35209) Full Text: DOI
Koch, Herbert; Liao, Xian Conserved energies for the one dimensional Gross-Pitaevskii equation. (English) Zbl 1455.35236 Adv. Math. 377, Article ID 107467, 84 p. (2021). MSC: 35Q55 35Q53 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Koch} and \textit{X. Liao}, Adv. Math. 377, Article ID 107467, 84 p. (2021; Zbl 1455.35236) Full Text: DOI
Cunha, Alysson; Pastor, Ademir Persistence properties for the dispersion generalized BO-ZK equation in weighted anisotropic Sobolev spaces. (English) Zbl 1455.35034 J. Differ. Equations 274, 1067-1114 (2021). MSC: 35B60 35G25 35A01 35Q53 35R11 PDF BibTeX XML Cite \textit{A. Cunha} and \textit{A. Pastor}, J. Differ. Equations 274, 1067--1114 (2021; Zbl 1455.35034) Full Text: DOI
Kishimoto, Nobu Unconditional local well-posedness for periodic NLS. (English) Zbl 1454.35344 J. Differ. Equations 274, 766-787 (2021). MSC: 35Q55 35A02 PDF BibTeX XML Cite \textit{N. Kishimoto}, J. Differ. Equations 274, 766--787 (2021; Zbl 1454.35344) Full Text: DOI
Ogawa, Takayoshi; Shimizu, Senjo Global well-posedness for the incompressible Navier-Stokes equations in the critical Besov space under the Lagrangian coordinates. (English) Zbl 1454.35260 J. Differ. Equations 274, 613-651 (2021). MSC: 35Q30 76D05 42B25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Ogawa} and \textit{S. Shimizu}, J. Differ. Equations 274, 613--651 (2021; Zbl 1454.35260) Full Text: DOI
Zhang, Lei; Qiao, Zhijun Global-in-time solvability and blow-up for a non-isospectral two-component cubic Camassa-Holm system in a critical Besov space. (English) Zbl 07289108 J. Differ. Equations 274, 414-460 (2021). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35D35 35G50 35B44 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{Z. Qiao}, J. Differ. Equations 274, 414--460 (2021; Zbl 07289108) Full Text: DOI
Liu, Lvqiao; Tan, Jin Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces. (English) Zbl 1454.35291 J. Differ. Equations 274, 382-413 (2021). MSC: 35Q35 76D03 76W05 35B35 35A01 35A02 86A10 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Tan}, J. Differ. Equations 274, 382--413 (2021; Zbl 1454.35291) Full Text: DOI
Chaichenets, Leonid; Pattakos, Nikolaos The global Cauchy problem for the NLS with higher order anisotropic dispersion. (English) Zbl 1455.35234 Glasg. Math. J. 63, No. 1, 45-53 (2021). MSC: 35Q55 35A01 35A02 35B40 PDF BibTeX XML Cite \textit{L. Chaichenets} and \textit{N. Pattakos}, Glasg. Math. J. 63, No. 1, 45--53 (2021; Zbl 1455.35234) Full Text: DOI
Liu, Yang; Zhong, Xin Global well-posedness to the 3D Cauchy problem of compressible non-isothermal nematic liquid crystal flows with vacuum. (English) Zbl 1455.35199 Nonlinear Anal., Real World Appl. 58, Article ID 103219, 24 p. (2021). MSC: 35Q35 76A15 76N10 76N06 35A01 35A02 35D35 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{X. Zhong}, Nonlinear Anal., Real World Appl. 58, Article ID 103219, 24 p. (2021; Zbl 1455.35199) Full Text: DOI
Zheng, Xiangcheng; Wang, Hong; Fu, Hongfei Analysis of a physically-relevant variable-order time-fractional reaction-diffusion model with Mittag-Leffler kernel. (English) Zbl 1453.35185 Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021). MSC: 35R11 35K20 35K57 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021; Zbl 1453.35185) Full Text: DOI
Chen, Qionglei; Hao, Xiaonan Large global solutions to the three dimensional chemotaxis-Navier-Stokes equations slowly varying in one direction. (English) Zbl 1453.35112 Appl. Math. Lett. 112, Article ID 106773, 6 p. (2021). MSC: 35K51 35K59 35Q30 92C17 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{X. Hao}, Appl. Math. Lett. 112, Article ID 106773, 6 p. (2021; Zbl 1453.35112) Full Text: DOI
Xu, Fuyi; Chi, Meiling The unique global solvability and optimal time decay rates for a multi-dimensional compressible generic two-fluid model with capillarity effect. (English) Zbl 1452.76251 Nonlinearity 34, No. 1, 164-204 (2021). MSC: 76T10 76N10 35Q30 PDF BibTeX XML Cite \textit{F. Xu} and \textit{M. Chi}, Nonlinearity 34, No. 1, 164--204 (2021; Zbl 1452.76251) Full Text: DOI
Holden, Helge; Karlsen, Kenneth H.; Pang, Peter H. C. The Hunter-Saxton equation with noise. (English) Zbl 1451.35266 J. Differ. Equations 270, 725-786 (2021). MSC: 35R60 35L60 60H15 PDF BibTeX XML Cite \textit{H. Holden} et al., J. Differ. Equations 270, 725--786 (2021; Zbl 1451.35266) Full Text: DOI
Holmes, John; Puri, Rajan Non-uniqueness for the ab-family of equations. (English) Zbl 1451.35003 J. Math. Anal. Appl. 493, No. 2, Article ID 124563, 11 p. (2021). MSC: 35A02 35G25 PDF BibTeX XML Cite \textit{J. Holmes} and \textit{R. Puri}, J. Math. Anal. Appl. 493, No. 2, Article ID 124563, 11 p. (2021; Zbl 1451.35003) Full Text: DOI
Deng, Lihua; Shang, Haifeng Global well-posedness for \(n\)-dimensional magneto-micropolar equations with hyperdissipation. (English) Zbl 1451.35129 Appl. Math. Lett. 111, Article ID 106610, 8 p. (2021). MSC: 35Q35 76A05 76W05 35B65 35A01 35A02 35R11 26A33 PDF BibTeX XML Cite \textit{L. Deng} and \textit{H. Shang}, Appl. Math. Lett. 111, Article ID 106610, 8 p. (2021; Zbl 1451.35129) Full Text: DOI
Cai, Dong-ling; Sofonea, Mircea; Xiao, Yi-bin Convergence results for elliptic variational-hemivariational inequalities. (English) Zbl 07210945 Adv. Nonlinear Anal. 10, 2-23 (2021). MSC: 47J20 49J40 49J45 35M86 74M10 74M15 PDF BibTeX XML Cite \textit{D.-l. Cai} et al., Adv. Nonlinear Anal. 10, 2--23 (2021; Zbl 07210945) Full Text: DOI
Carvajal, Xavier A remark on the local well-posedness for a coupled system of mKdV type equations in \(H^s \times H^k\). (English) Zbl 07332061 Differ. Equ. Appl. 12, No. 4, 443-456 (2020). MSC: 35Q35 35Q53 PDF BibTeX XML Cite \textit{X. Carvajal}, Differ. Equ. Appl. 12, No. 4, 443--456 (2020; Zbl 07332061) Full Text: DOI
Liu, Ranran; Liu, Hui; Xin, Jie Attractor for the non-autonomous long wave-short wave resonance interaction equation with damping. (English) Zbl 07331956 J. Appl. Anal. Comput. 10, No. 3, 1149-1169 (2020). MSC: 35Q55 35B45 34D45 PDF BibTeX XML Cite \textit{R. Liu} et al., J. Appl. Anal. Comput. 10, No. 3, 1149--1169 (2020; Zbl 07331956) Full Text: DOI
Semenova, N. V.; Lomaga, M. M.; Semenov, V. V. Existence of solutions and solving method of lexicographic problem of convex optimization with the linear criteria functions. (Ukrainian. English summary) Zbl 07329582 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 12, 19-27 (2020). MSC: 90C25 90C29 49K40 PDF BibTeX XML Cite \textit{N. V. Semenova} et al., Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 12, 19--27 (2020; Zbl 07329582) Full Text: DOI
Chifu, Cristian; Petruşel, Adrian; Petruşel, Gabriela Fixed point results for non-self nonlinear graphic contractions in complete metric spaces with applications. (English) Zbl 07328288 J. Fixed Point Theory Appl. 22, No. 4, Paper No. 97, 16 p. (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{C. Chifu} et al., J. Fixed Point Theory Appl. 22, No. 4, Paper No. 97, 16 p. (2020; Zbl 07328288) Full Text: DOI
Tang, Guo-ji; Cen, Jinxia; Nguyen, Van Thien; Zeng, Shengda Differential variational-hemivariational inequalities: existence, uniqueness, stability, and convergence. (English) Zbl 07328274 J. Fixed Point Theory Appl. 22, No. 4, Paper No. 83, 30 p. (2020). MSC: 47J20 49J40 58E35 35K90 46Txx PDF BibTeX XML Cite \textit{G.-j. Tang} et al., J. Fixed Point Theory Appl. 22, No. 4, Paper No. 83, 30 p. (2020; Zbl 07328274) Full Text: DOI
Tuan, Nguyen Huy; Au, Vo Van; Tri, Vo Viet; O’Regan, Donal On the well-posedness of a nonlinear pseudo-parabolic equation. (English) Zbl 07328268 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 77, 21 p. (2020). MSC: 35K70 35K15 35A01 35B40 35B44 35B65 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Fixed Point Theory Appl. 22, No. 3, Paper No. 77, 21 p. (2020; Zbl 07328268) Full Text: DOI
Gong, Shengbo; Wang, Xiang; Wang, Yaguang Stability and back flow of boundary layers for wind-driven oceanic current. (English) Zbl 07327462 Commun. Math. Sci. 18, No. 3, 593-612 (2020). MSC: 35Q 35B40 35Q30 76D05 76D10 PDF BibTeX XML Cite \textit{S. Gong} et al., Commun. Math. Sci. 18, No. 3, 593--612 (2020; Zbl 07327462) Full Text: DOI
Reem, Daniel; Reich, Simeon; De Pierro, Alvaro Stability of the optimal values under small perturbations of the constraint set. (English) Zbl 07326958 Pure Appl. Funct. Anal. 5, No. 3, 705-731 (2020). MSC: 49K40 54E35 90C31 90C26 15A09 PDF BibTeX XML Cite \textit{D. Reem} et al., Pure Appl. Funct. Anal. 5, No. 3, 705--731 (2020; Zbl 07326958) Full Text: Link
Nascimento, A. C. On special regularity properties of solutions of the Benjamin-Ono-Zakharov-Kuznetsov (BO-ZK) equation. (English) Zbl 07326892 Commun. Pure Appl. Anal. 19, No. 9, 4285-4325 (2020). MSC: 35Q53 35G31 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{A. C. Nascimento}, Commun. Pure Appl. Anal. 19, No. 9, 4285--4325 (2020; Zbl 07326892) Full Text: DOI
Zhai, Xiaoping Global wellposedness and large time behavior of solutions to the Hall-magnetohydrodynamics equations. (English) Zbl 07326796 Z. Anal. Anwend. 39, No. 4, 395-419 (2020). MSC: 35Q30 35B40 35B65 76W05 PDF BibTeX XML Cite \textit{X. Zhai}, Z. Anal. Anwend. 39, No. 4, 395--419 (2020; Zbl 07326796) Full Text: DOI
Shams, Mahnaz; Oveisiha, Morteza; Abkar, Ali Strong well-posedness of a system of split variational inequalities. (English) Zbl 07324961 Bull. Belg. Math. Soc. - Simon Stevin 27, No. 4, 547-556 (2020). Reviewer: Bing Tan (Chengdu) MSC: 49J40 49K40 90C31 PDF BibTeX XML Cite \textit{M. Shams} et al., Bull. Belg. Math. Soc. - Simon Stevin 27, No. 4, 547--556 (2020; Zbl 07324961) Full Text: DOI Euclid
Ntekoume, Maria Homogenization for the cubic nonlinear Schrödinger equation on \(\mathbb R^2\). (English) Zbl 07324627 Commun. Partial Differ. Equations 45, No. 11, 1561-1588 (2020). Reviewer: Paolo Musolino (Padova) MSC: 35B27 35Q55 PDF BibTeX XML Cite \textit{M. Ntekoume}, Commun. Partial Differ. Equations 45, No. 11, 1561--1588 (2020; Zbl 07324627) Full Text: DOI
Mendez, Argenis J. On the propagation of regularity for solutions of the dispersion generalized Benjamin-Ono equation. (English) Zbl 07324220 Anal. PDE 13, No. 8, 2399-2440 (2020). MSC: 35Q53 35Q05 PDF BibTeX XML Cite \textit{A. J. Mendez}, Anal. PDE 13, No. 8, 2399--2440 (2020; Zbl 07324220) Full Text: DOI
Mahata, Shantiram; Sinha, Rajen Kumar On the existence, uniqueness and stability results for time-fractional parabolic integrodifferential equations. (English) Zbl 07323989 J. Integral Equations Appl. 32, No. 4, 457-477 (2020). MSC: 35R09 35R11 35K20 35B65 PDF BibTeX XML Cite \textit{S. Mahata} and \textit{R. K. Sinha}, J. Integral Equations Appl. 32, No. 4, 457--477 (2020; Zbl 07323989) Full Text: DOI Euclid
Hishida, Toshiaki; Silvestre, Ana Leonor; Takahashi, Takéo Optimal boundary control for steady motions of a self-propelled body in a Navier-Stokes liquid. (English) Zbl 07323754 ESAIM, Control Optim. Calc. Var. 26, Paper No. 92, 42 p. (2020). MSC: 76D55 76D05 76U05 76M30 35Q30 PDF BibTeX XML Cite \textit{T. Hishida} et al., ESAIM, Control Optim. Calc. Var. 26, Paper No. 92, 42 p. (2020; Zbl 07323754) Full Text: DOI
Ackleh, Azmy S.; Saintier, Nicolas Well-posedness of a system of transport and diffusion equations in space of measures. (English) Zbl 07322791 J. Math. Anal. Appl. 492, No. 1, Article ID 124397, 28 p. (2020). MSC: 35G55 35Q49 35K58 PDF BibTeX XML Cite \textit{A. S. Ackleh} and \textit{N. Saintier}, J. Math. Anal. Appl. 492, No. 1, Article ID 124397, 28 p. (2020; Zbl 07322791) Full Text: DOI
Royset, Johannes O. Stability and error analysis for optimization and generalized equations. (English) Zbl 07319905 SIAM J. Optim. 30, No. 1, 752-780 (2020). MSC: 90C46 90C33 90C31 49K27 49K40 65K10 PDF BibTeX XML Cite \textit{J. O. Royset}, SIAM J. Optim. 30, No. 1, 752--780 (2020; Zbl 07319905) Full Text: DOI
Huo, Zhaohui; Jia, Yueling Dyadic bilinear estimates and applications to the well-posedness for the 2D Zakharov-Kuznetsov equation in the endpoint space \(H^{-1/4} \). (English) Zbl 07318578 Forum Math. 32, No. 6, 1575-1598 (2020). MSC: 35B45 35G25 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Huo} and \textit{Y. Jia}, Forum Math. 32, No. 6, 1575--1598 (2020; Zbl 07318578) Full Text: DOI
Wang, Yong On a class of new generalized Poisson-Nernst-Planck-Navier-Stokes equations. (English) Zbl 07315519 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 674-681 (2020). MSC: 35Q35 35Q92 76W05 PDF BibTeX XML Cite \textit{Y. Wang}, AIMS Ser. Appl. Math. 10, 674--681 (2020; Zbl 07315519)
Pichard, Teddy Existence of steady two-phase flows with discontinuous boiling effects. (English) Zbl 07315511 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 603-610 (2020). MSC: 35Q35 35R05 34A36 PDF BibTeX XML Cite \textit{T. Pichard}, AIMS Ser. Appl. Math. 10, 603--610 (2020; Zbl 07315511)
Ancona, Fabio; Caravenna, Laura; Christoforou, Cleopatra On \(L^1\)-stability of BV solutions for a model of granular flow. (English) Zbl 07315467 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 239-247 (2020). MSC: 35L65 35B35 76T25 35L45 35B35 PDF BibTeX XML Cite \textit{F. Ancona} et al., AIMS Ser. Appl. Math. 10, 239--247 (2020; Zbl 07315467)
Wang, Jingqun; Tian, Lixin Boundary controllability for the time-fractional nonlinear Korteweg-de Vries (KdV) equation. (English) Zbl 07315119 J. Appl. Anal. Comput. 10, No. 2, 411-426 (2020). MSC: 93B05 93C20 35Q53 PDF BibTeX XML Cite \textit{J. Wang} and \textit{L. Tian}, J. Appl. Anal. Comput. 10, No. 2, 411--426 (2020; Zbl 07315119) Full Text: DOI
Amann, Herbert Population dynamics in hostile neighborhoods. (English) Zbl 07312820 Rend. Ist. Mat. Univ. Trieste 52, 27-43 (2020). MSC: 35K59 35K65 35K57 92D25 PDF BibTeX XML Cite \textit{H. Amann}, Rend. Ist. Mat. Univ. Trieste 52, 27--43 (2020; Zbl 07312820) Full Text: DOI Link